Cancer is a major public health issue and figures among the leading causes of death in the world. Cancer development is a long process, involving the mutation, amplification or deletion of genes and chromosomal rearrangements. The transformed cells change morphologically, enlarge, become invasive and finally detach from the primary tumor to metastasize in other organs through the blood and/or lymph. During this process, the tumor cells interact with their microenvironment, which is complex and composed of stromal and immune cells that penetrate the tumor site via blood vessels and lymphoid capillaries. All subsets of immune cells can be found in tumors, but their respective density, functionality and organization vary from one type of tumor to another. Whereas inflammatory cells play a protumoral role, there is a large body of evidence of effector memory T cells controlling tumor invasion and metastasis. Thus, high densities of memory Th1/CD8 cytotoxic T cells in the primary tumors correlate with good prognosis in most tumor types. Tertiary lymphoid structures, which contain mature dendritic cells (DC) in a T cell zone, proliferating B cells and follicular DC, are found in the tumor stroma and they correlate with intratumoral Th1/CD8 T cell and B cell infiltration. Eventually, tumors undergo genetic and epigenetic modifications that allow them to escape being controlled by the immune system. This comprehensive review describes the immune contexture of human primary and metastatic tumors, how it impacts on patient outcomes and how it could be used as a predictive biomarker and guide immunotherapies.

1.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011;61:69-90.
2.
Sobin LH, Gospodarowicz MK, Wittekind C; Cancer IUA: TNM Classification of Malignant Tumours, ed 7: Chichester, Wiley-Blackwell, 2010.
3.
Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000;100:57-70.
4.
Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, et al: Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006;355:560-569.
5.
Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, et al: Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 2013;10:e1001453.
6.
Brannon AR, Reddy A, Seiler M, Arreola A, Moore DT, Pruthi RS, et al: Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 2010;1:152-163.
7.
Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011;144:646-674.
8.
Hanahan D, Coussens LM: Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21:309-322.
9.
Fridman WH, Pages F, Sautes-Fridman C, Galon J: The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012;12:298-306.
10.
Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al: Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338:120-123.
11.
Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al: Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001;345:784-789.
12.
Thompson MP, Kurzrock R: Epstein-Barr virus and cancer. Clin Cancer Res 2004;10:803-821.
13.
Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP: The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006;45:529-538.
14.
Rosin MP, Anwar WA, Ward AJ: Inflammation, chromosomal instability, and cancer: the schistosomiasis model. Cancer Res 1994;54(7 suppl):1929s-1933s.
15.
Hecht SS: Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 2003;3:733-744.
16.
Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, et al: A review of human carcinogens. Part F. Chemical agents and related occupations. Lancet Oncol 2009;10:1143-1144.
17.
Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow? Lancet 2001;357:539-545.
18.
Pollard JW: Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 2008;84:623-630.
19.
Pollard JW: Trophic macrophages in development and disease. Nat Rev Immunol 2009;9:259-270.
20.
Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71-78.
21.
Reymond N, d'Agua BB, Ridley AJ: Crossing the endothelial barrier during metastasis. Nat Rev Cancer 2013;13:858-870.
22.
Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al: Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005;65:5278-5283.
23.
Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, et al: A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PloS One 2009;4:e6562.
24.
Condeelis J, Pollard JW: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006;124:263-266.
25.
Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141:39-51.
26.
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-1964.
27.
Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, et al: In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 2009;27:5944-5951.
28.
de Chaisemartin L, Goc J, Damotte D, Validire P, Magdeleinat P, Alifano M, et al: Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 2011;71:6391-6399.
29.
Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al: Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008;26:4410-4417.
30.
Goc J, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC: Characteristics of tertiary lymphoid structures in primary cancers. Oncoimmunology 2013;2:e26836.
31.
Drayton DL, Liao S, Mounzer RH, Ruddle NH: Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 2006;7:344-353.
32.
Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, et al: Role of inducible bronchus-associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 2004;10:927-934.
33.
Shomer NH, Fox JG, Juedes AE, Ruddle NH: Helicobacter-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect Immun 2003;71:3572-3577.
34.
Thaunat O, Field AC, Dai J, Louedec L, Patey N, Bloch MF, et al: Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc Nat Acad Sci USA 2005;102:14723-14728.
35.
Schroder AE, Greiner A, Seyfert C, Berek C: Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 1996;93:221-225.
36.
Carragher DM, Rangel-Moreno J, Randall TD: Ectopic lymphoid tissues and local immunity. Semin Immunol 2008;20:26-42.
37.
Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Girerd B, et al: Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2012;185:311-321.
38.
Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K: Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjögren's syndrome. J Clin Immunol 2005;25:189-201.
39.
Shilling RA, Williams JW, Perera J, Berry E, Wu Q, Cummings OW, et al: Autoreactive T and B cells induce the development of bronchus-associated lymphoid tissue in the lung. Am J Respir Cell Mol Biol 2013;48:406-414.
40.
Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al: Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007;130:1089-1104.
41.
Le Pottier L, Devauchelle V, Fautrel A, Daridon C, Saraux A, Youinou P, et al: Ectopic germinal centers are rare in Sjögren's syndrome salivary glands and do not exclude autoreactive B cells. J Immunol 2009;182:3540-3547.
42.
Thaunat O, Patey N, Caligiuri G, Gautreau C, Mamani-Matsuda M, Mekki Y, et al: Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J Immunol 2010;185:717-728.
43.
Moyron-Quiroz JE, Rangel-Moreno J, Hartson L, Kusser K, Tighe MP, Klonowski KD, et al: Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 2006;25:643-654.
44.
Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, et al: Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in lung cancer patients. Am J Respir Crit Care Med 2014;189:832-844.
45.
Remark R, Alifano M, Cremer I, Lupo A, Dieu-Nosjean MC, Riquet M, et al: Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res 2013;19:4079-4091.
46.
Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010;11:889-896.
47.
Friedl P, Wolf K: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003;3:362-374.
48.
Goel HL, Mercurio AM: VEGF targets the tumour cell. Nat Rev Cancer 2013;13:871-882.
49.
Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005;23:1011-1027.
50.
Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-1186.
51.
Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983-985.
52.
Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841-844.
53.
Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J: Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242-248.
54.
Polnaszek N, Kwabi-Addo B, Peterson LE, Ozen M, Greenberg NM, Ortega S, et al: Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res 2003;63:5754-5760.
55.
Semenza GL: HIF-1 and human disease: one highly involved factor. Genes Dev 2000;14:1983-1991.
56.
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399:271-275.
57.
Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, et al: Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997;94:8104-8109.
58.
Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L: Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 1999;274:6519-6525.
59.
Jonasch E, Futreal PA, Davis IJ, Bailey ST, Kim WY, Brugarolas J, et al: State of the science: an update on renal cell carcinoma. Mol Cancer Res 2012;10:859-880.
60.
Chouaib S, Messai Y, Couve S, Escudier B, Hasmim M, Noman MZ: Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol 2012;3:21.
61.
Raman D, Baugher PJ, Thu YM, Richmond A: Role of chemokines in tumor growth. Cancer Lett 2007;256:137-165.
62.
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD: Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991-998.
63.
Schreiber RD, Old LJ, Smyth MJ: Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011;331:1565-1570.
64.
MacKie RM, Reid R, Junor B: Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 2003;348:567-568.
65.
Strauss DC, Thomas JM: Transmission of donor melanoma by organ transplantation. Lancet Oncol 2010;11:790-796.
66.
Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011;29:235-271.
67.
Dunn GP, Old LJ, Schreiber RD: The three Es of cancer immunoediting. Annu Rev Immunol 2004;22:329-360.
68.
Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, et al: Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 2011;71:5412-5422.
69.
Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, et al: Human breast cancer cells enhance self-tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 2011;121:3609-3622.
70.
Messaoudene M, Fregni G, Fourmentraux-Neves E, Chanal J, Maubec E, Mazouz-Dorval S, et al: Mature cytotoxic CD56bright/CD16+ natural killer cells can infiltrate lymph nodes adjacent to metatatic melanoma. Cancer Res 2014;74:81-92.
71.
Cremer I, Fridman WH, Sautes-Fridman C: Tumor microenvironment in NSCLC suppresses NK cells function. Oncoimmunology 2012;1:244-246.
72.
Gillard-Bocquet M, Caer C, Cagnard N, Crozet L, Perez M, Fridman WH, et al: Lung tumor microenvironment induces specific gene expression signature in intratumoral NK cells. Front Immunol 2013;4:19.
73.
Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, et al: Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res 2012;72:1407-1415.
74.
Cipponi A, Mercier M, Seremet T, Baurain JF, Theate I, van den Oord J, et al: Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res 2012;72:3997-4007.
75.
Enarsson K, Johnsson E, Lindholm C, Lundgren A, Pan-Hammarstrom Q, Stromberg E, et al: Differential mechanisms for T lymphocyte recruitment in normal and neoplastic human gastric mucosa. Clin Immunol 2006;118:24-34.
76.
Miyasaka M, Tanaka T: Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 2004;4:360-370.
77.
Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, et al: Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 2010;138:1429-1440.
78.
Hillinger S, Yang SC, Batra RK, Strieter RM, Weder W, Dubinett SM, et al: CCL19 reduces tumour burden in a model of advanced lung cancer. Br J Cancer 2006;94:1029-1034.
79.
Hamanishi J, Mandai M, Matsumura N, Baba T, Yamaguchi K, Fujii S, et al: Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells 2010;28:164-173.
80.
Gao JQ, Sugita T, Kanagawa N, Iida K, Okada N, Mizuguchi H, et al: Anti-tumor responses induced by chemokine CCL19 transfected into an ovarian carcinoma model via fiber-mutant adenovirus vector. Biol Pharm Bull 2005;28:1066-1070.
81.
Yousefieh N, Hahto SM, Stephens AL, Ciavarra RP: Regulated expression of CCL21 in the prostate tumor microenvironment inhibits tumor growth and metastasis in an orthotopic model of prostate cancer. Cancer Microenviron 2009;2:59-67.
82.
Bromley SK, Mempel TR, Luster AD: Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008;9:970-980.
83.
Thomsen AR, Nansen A, Madsen AN, Bartholdy C, Christensen JP: Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines. Immunol Lett 2003;85:119-127.
84.
Moran CJ, Arenberg DA, Huang CC, Giordano TJ, Thomas DG, Misek DE, et al: RANTES expression is a predictor of survival in stage I lung adenocarcinoma. Clinical Cancer Res 2002;8:3803-3812.
85.
Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401:708-712.
86.
Viola A, Luster AD: Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 2008;48:171-197.
87.
Kanagawa N, Niwa M, Hatanaka Y, Tani Y, Nakagawa S, Fujita T, et al: CC-chemokine ligand 17 gene therapy induces tumor regression through augmentation of tumor-infiltrating immune cells in a murine model of preexisting CT26 colon carcinoma. Int J Cancer 2007;121:2013-2022.
88.
Okada N, Sasaki A, Niwa M, Okada Y, Hatanaka Y, Tani Y, et al: Tumor suppressive efficacy through augmentation of tumor-infiltrating immune cells by intratumoral injection of chemokine-expressing adenoviral vector. Cancer Gene Ther 2006;13:393-405.
89.
Inoue H, Iga M, Xin M, Asahi S, Nakamura T, Kurita R, et al: TARC and RANTES enhance antitumor immunity induced by the GM-CSF-transduced tumor vaccine in a mouse tumor model. Cancer Immunol Immunother: CII 2008;57:1399-1411.
90.
Kang S, Xie J, Ma S, Liao W, Zhang J, Luo R: Targeted knock down of CCL22 and CCL17 by siRNA during DC differentiation and maturation affects the recruitment of T subsets. Immunobiology 2010;215:153-162.
91.
Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, et al: Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 2009;69:2000-2009.
92.
Qin XJ, Shi HZ, Deng JM, Liang QL, Jiang J, Ye ZJ: CCL22 recruits CD4-positive CD25-positive regulatory T cells into malignant pleural effusion. Clin Cancer Res 2009;15:2231-2237.
93.
Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, et al: CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 2008;122:2286-2293.
94.
Nakazaki Y, Hase H, Inoue H, Beppu Y, Meng XK, Sakaguchi G, et al: Serial analysis of gene expression in progressing and regressing mouse tumors implicates the involvement of RANTES and TARC in antitumor immune responses. Mol Ther 2006;14:599-606.
95.
Nakanishi T, Imaizumi K, Hasegawa Y, Kawabe T, Hashimoto N, Okamoto M, et al: Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol Immunother 2006;55:1320-1329.
96.
Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013;39:782-795.
97.
Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, et al: CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 2013;123:2873-2892.
98.
Sautes-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, et al: Tumor microenvironment is multifaceted. Cancer Metastasis Rev 2011;30:13-25.
99.
Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, et al: Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 2011;71:5670-5677.
100.
Jass JR: Lymphocytic infiltration and survival in rectal cancer. J Clin Pathol 1986;39:585-589.
101.
Clark WH Jr, Elder DE, Guerry DT, Braitman LE, Trock BJ, Schultz D, et al: Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 1989;81:1893-1904.
102.
Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203-213.
103.
Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al: Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353:2654-2666.
104.
Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, et al: Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 2011;29:610-618.
105.
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 2011;71:1263-1271.
106.
Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al: Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 2009;27:186-192.
107.
Funada Y, Noguchi T, Kikuchi R, Takeno S, Uchida Y, Gabbert HE: Prognostic significance of CD8+ T cell and macrophage peritumoral infiltration in colorectal cancer. Oncol Rep 2003;10:309-313.
108.
Kang JC, Chen JS, Lee CH, Chang JJ, Shieh YS: Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol 2010;102:242-248.
109.
Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, et al: The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 1997;79:2320-2328.
110.
Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, et al: Cancer classification using the Immunoscore: a worldwide task force. J Transl Med 2012;10:205.
111.
Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al: The immune score as a new possible approach for the classification of cancer. J Transl Med 2012;10:1.
112.
Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, et al: Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 2007;56:1459-1469.
113.
Mackensen A, Ferradini L, Carcelain G, Triebel F, Faure F, Viel S, et al: Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res 1993;53:3569-3573.
114.
Shibuya TY, Nugyen N, McLaren CE, Li KT, Wei WZ, Kim S, et al: Clinical significance of poor CD3 response in head and neck cancer. Clin Cancer Res 2002;8:745-751.
115.
Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al: Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 2011;29:1949-1955.
116.
Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, DeLisi C, et al: High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res 2007;67:10669-10676.
117.
Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, et al: Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 2009;58:449-459.
118.
Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al: Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005;102:18538-18543.
119.
Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, et al: CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 2003;63:1555-1559.
120.
Schumacher K, Haensch W, Roefzaad C, Schlag PM: Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 2001;61:3932-3936.
121.
Karja V, Aaltomaa S, Lipponen P, Isotalo T, Talja M, Mokka R: Tumour-infiltrating lymphocytes: A prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res 2005;25:4435-4438.
122.
Vesalainen S, Lipponen P, Talja M, Syrjanen K: Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer 1994;30A:1797-1803.
123.
Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT: Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clinical Cancer Res 2008;14:5220-5227.
124.
Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, et al: Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 2008;113:1387-1395.
125.
Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T, et al: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 2004;28:e26-e31.
126.
Grabenbauer GG, Lahmer G, Distel L, Niedobitek G: Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clinical Cancer Res 2006;12:3355-3360.
127.
Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, et al: CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci USA 2007;104:3967-3972.
128.
Bromwich EJ, McArdle PA, Canna K, McMillan DC, McNicol AM, Brown M, et al: The relationship between T-lymphocyte infiltration, stage, tumour grade and survival in patients undergoing curative surgery for renal cell cancer. Br J Cancer 2003;89:1906-1908.
129.
Kolbeck PC, Kaveggia FF, Johansson SL, Grune MT, Taylor RJ: The relationships among tumor-infiltrating lymphocytes, histopathologic findings, and long-term clinical follow-up in renal cell carcinoma. Mod Pathol 1992;5:420-425.
130.
Hotta K, Sho M, Fujimoto K, Shimada K, Yamato I, Anai S, et al: Prognostic significance of CD45RO+ memory T cells in renal cell carcinoma. Br J Cancer 2011;105:1191-1196.
131.
Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, et al: Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 2001;61:5132-5136.
132.
de la Cruz PO Jr, Specht CS, McLean IW: Lymphocytic infiltration in uveal malignant melanoma. Cancer 1990;65:112-115.
133.
Whelchel JC, Farah SE, McLean IW, Burnier MN: Immunohistochemistry of infiltrating lymphocytes in uveal malignant melanoma. Invest Ophthalmol Vis Sci 1993;34:2603-2606.
134.
Hasselblom S, Sigurdadottir M, Hansson U, Nilsson-Ehle H, Ridell B, Andersson PO: The number of tumour-infiltrating TIA-1+ cytotoxic T cells but not FOXP3+ regulatory T cells predicts outcome in diffuse large B-cell lymphoma. Br J Haematol 2007;137:364-373.
135.
Muris JJ, Meijer CJ, Cillessen SA, Vos W, Kummer JA, Bladergroen BA, et al: Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas. Leukemia 2004;18:589-596.
136.
Galand C, Donnou S, Molina TJ, Fridman WH, Fisson S, Sautes-Fridman C: Influence of tumor location on the composition of immune infiltrate and its impact on patient survival. Lessons from DCBCL and animal models. Front Immunol 2012;3:98.
137.
Camus M, Tosolini M, Mlecnik B, Pages F, Kirilovsky A, Berger A, et al: Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 2009;69:2685-2693.
138.
Motz GT, Coukos G: The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 2011;11:702-711.
139.
Ishigami SI, Arii S, Furutani M, Niwano M, Harada T, Mizumoto M, et al: Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J cancer 1998;78:1379-1384.
140.
Jacobsen J, Grankvist K, Rasmuson T, Bergh A, Landberg G, Ljungberg B: Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int 2004;93:297-302.
141.
Inoshima N, Nakanishi Y, Minami T, Izumi M, Takayama K, Yoshino I, et al: The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clinical Cancer Res 2002;8:3480-3486.
142.
Goc J, Germain C, Vo-Bourgais TK, Lupo A, Klein C, Knockaert S, et al: Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the good positive prognostic value of infiltrating CD8+ T cells. Cancer Res 2014;74:705-715.
143.
Giraldo NA, Becht E, Remark R, Damotte D, Sautes-Fridman C, Fridman WH: The immune contexture of primary and metastatic human tumours. Curr Opin Immunol 2014;27C:8-15.
144.
Chomarat P, Banchereau J, Davoust J, Palucka AK: IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000;1:510-514.
145.
Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998;92:4150-4166.
146.
Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2:1096-1103.
147.
Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, et al: Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998;92:4778-4791.
148.
Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, et al: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 1998;160:1224-1232.
149.
Ohm JE, Carbone DP: VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 2001;23:263-272.
150.
Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, et al: VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003;101:4878-4886.
151.
Rayman P, Wesa AK, Richmond AL, Das T, Biswas K, Raval G, et al: Effect of renal cell carcinomas on the development of type 1 T-cell responses. Clin Cancer Res 2004;10:6360S-6366S.
152.
Uzzo RG, Rayman P, Kolenko V, Clark PE, Cathcart MK, Bloom T, et al: Renal cell carcinoma-derived gangliosides suppress nuclear factor-kappaB activation in T cells. J Clin Invest 1999;104:769-776.
153.
Attig S, Hennenlotter J, Pawelec G, Klein G, Koch SD, Pircher H, et al: Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas. Cancer Res 2009;69:8412-8419.
154.
Donskov F, von der Maase H: Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J Clin Oncol 2006;24:1997-2005.
155.
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Medicine 2010;363:411-422.
156.
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011;3:95ra73.
157.
Abes R, Gelize E, Fridman WH, Teillaud JL: Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. Blood 2010;116:926-934.
158.
Abes R, Teillaud JL: Modulation of tumor immunity by therapeutic monoclonal antibodies. Cancer Metastasis Rev 2011;30:111-124.
159.
Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, et al: Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunol 2013;2:e22789.
160.
Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al: Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Sci 2008;321:974-977.
161.
Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al: Nivolumab plus ipilimumab in advanced melanoma. New Engl J Med 2013;369:122-133.
162.
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711-723.
163.
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443-2454.
164.
Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, et al: Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clinical Cancer Res 2009;15:7412-7420.
165.
Martin J, Ginsberg RJ, Venkatraman ES, Bains MS, Downey RJ, Korst RJ, et al: Long-term results of combined-modality therapy in resectable non-small-cell lung cancer. J Clin Oncol 2002;20:1989-1995.
166.
Blazer DG 3rd, Kishi Y, Maru DM, Kopetz S, Chun YS, Overman MJ, et al: Pathologic response to preoperative chemotherapy: a new outcome end point after resection of hepatic colorectal metastases. J Clin Oncol 2008;26:5344-5351.
167.
Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, et al: An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 2012;61:1019-1031.
168.
Kwek SS, Dao V, Roy R, Hou Y, Alajajian D, Simko JP, et al: Diversity of antigen-specific responses induced in vivo with CTLA-4 blockade in prostate cancer patients. J Immunol 2012;189:3759-3766.
169.
Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY, et al: Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother 2013;62:137-147.
170.
Lonchay C, van der Bruggen P, Connerotte T, Hanagiri T, Coulie P, Colau D, et al: Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci USA 2004;101(suppl 2):14631-14638.
171.
Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J, et al: A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 2011;9:204.
172.
Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al: Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013;38:729-741.
173.
Fridman WH, Teillaud JL, Sautes-Fridman C, Pages F, Galon J, Zucman-Rossi J, et al: The ultimate goal of curative anti-cancer therapies: inducing an adaptive anti-tumor immune response. Front Immunol 2011;2:66.
174.
Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, et al: VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 2013;73:539-549.
175.
Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G: The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008;118:1991-2001.
176.
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013;39:74-88.
177.
Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010;70:3052-3061.
178.
Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007;11:83-95.
179.
Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58-62.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.