Abstract
Background: Expression of allergens in human cells is a prerequisite for the development of antigen-specific cell therapy in IgE-mediated allergy. We developed a strategy how the clinically relevant major grass pollen allergen Phl p 5 can be efficiently secreted or expressed on the surface of human cells with preserved allergenic activity. Methods: The cDNA of Phl p 5 was fused to a leader peptide with or without a transmembrane domain and both constructs were ligated into a mammalian expression vector. Transfection of these plasmids into human cells resulted in a membrane-anchored or secreted version of Phl p 5, respectively, as determined by ELISA or flow cytometric analysis. Results: Both the secreted and membrane-anchored Phl p 5 proteins bound IgE from allergic patients in an immunoblot assay and induced specific histamine release and CD203c upregulation in basophils of grass pollen-allergic patients. Proliferation of peripheral blood mononuclear cells from Phl p 5-allergic individuals was induced upon stimulation with both variants of Phl p 5 expressed in human cells similar to recombinant Phl p 5. Conclusions: Secreted and membrane-anchored Phl p 5 expressed in human cells preserved B cell as well as T cell epitopes and may be used to develop and test various cell-based strategies for allergen-specific immunomodulation and to delineate the tolerance mechanisms involved therein.