Innate immunity provides a first line of host defence against infection through microbial recognition and killing while simultaneously activating a definitive adaptive immune response. Toll-like receptors (TLRs) are principal mediators of rapid microbial recognition and function mainly by detection of structural patterns that do not exist in the host. TLR2 and TLR4 were the first members of this innate immune receptor family to be strongly implicated in antibacterial host defence. Following the initial description of the mammalian TLR family, susceptibility to infection with numerous human microbial pathogens has been intensively studied using mice with engineered deletions of each of these molecules. While it has become quite clear that TLR activation is necessary for optimal host defence, a comprehensive understanding of the mechanisms by which this family of pattern recognition receptors engages protective immunity, particularly the adaptive response, is still evolving.

1.
Hooper L-V, Gordon JI: Commensal host-bacterial relationships in the gut. Science 2001;292:1115–1118.
2.
Berg RD: The indigenous gastrointestinal microflora. Trends Microbiol 1996;4:430–435.
3.
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R: Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229–241.
4.
Reid G, Howard J, Gan B-S: Can bacterial interference prevent infection? Trends Microbiol 2001;9:424–428.
5.
Guarner F, Malagelada JR: Gut flora in health and disease. Lancet 2003;361:512–519.
6.
Takeda K, Kaisho T, Akira S: Toll-like receptors. Annu Rev Immunol 2003;21:335–376.
7.
Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298–300.
8.
Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol 2004;4:499–511.
9.
Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, et al: Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 2004;101:3516–3521.
10.
Bowie A-G, Haga I-R: The role of Toll-like receptors in the host response to viruses. Mol Immunol 2005;42:859–867.
11.
Chuang T-H, Ulevitch RJ: Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 2000;11:372–378.
12.
Schroder M, Bowie A-G: TLR3 in antiviral immunity: key player or bystander? Trends Immunol 2005;26:462–468.
13.
Krieg A-M: CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002;20:709–760.
14.
Deng J-C, Moore TA, Newstead MW, Zeng X, Krieg AM, Standiford TJ: CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J Immunol 2004;173:5148–5155.
15.
Ito S, Ishii KJ, Shirota H, Klinman DM: CpG oligodeoxynucleotides improve the survival of pregnant and fetal mice following Listeria monocytogenes infection. Infect Immun 2004;72:3543–3548.
16.
Ito S, Ishii KJ, Gursel M, Shirotra H, Ihata A, Klinman DM: CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection. J Immunol 2005;174:777–782.
17.
Edwards L, Williams AE, Krieg AJ, Rae AJ, Snelgrove RJ, Hussell T: Stimulation via Toll-like receptor 9 reduces Cryptococcus neoformans-induced pulmonary inflammation in an IL-12-dependent manner. Eur J Immunol 2005;35:273–281.
18.
Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A: Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003;198:513–520.
19.
Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M: TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 2004;21:107–119.
20.
Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M: Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 2004;103:1433–1437.
21.
Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002;20:197–216.
22.
Hoffmann JA: The immune response of Drosophila. Nature 2003;426:33–38.
23.
Janssens S, Beyaert R: Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 2003;16:637–646.
24.
Fitzgerald K-A, Rowe DC, Golenbock DT: Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect 2004;6:1361–1367.
25.
da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ: Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex: transfer from CD14 to TLR4 and MD-2. J Biol Chem 2001;276:21129–21135.
26.
Choe J, Kelker MS, Wilson I-A: Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 2005;309:581–585.
27.
Tsan M-F, Gao B: Endogenous ligands of Toll-like receptors. J Leukoc Biol 2004;76:514–519.
28.
Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R: Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001;2:947–950.
29.
Hoebe K, Janssen E, Beutler B: The interface between innate and adaptive immunity. Nat Immunol 2004;5:971–974.
30.
Liew F-Y, Xu D, Brint EK, O’Neill LA: Negative regulation of Toll-like receptor-mediated immune responses. Nat Rev Immunol 2005;5:446–458.
31.
Lord KA, Hoffman-Liebermann B, Liebermann DA: Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 1990;5:1095–1097.
32.
Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z: MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997;7:837–847.
33.
Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr: MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998;2:253–258.
34.
McGettrick A-F, O’Neill LA: The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol Immunol 2004;41:577–582.
35.
Yamamoto M, Takeda K, Akira S: TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 2004;40:861–868.
36.
Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K, Akira S: Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 2001;167:5887–5894.
37.
O’Neill L-A, Fitzgerald KA, Bowie AG: The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 2003;24:286–290.
38.
Mink M, Fogelgren B, Olszewski K, Maroy P, Csiszar K: A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/β-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics 2001;74:234–244.
39.
Bogdan C: Nitric oxide and the immune response. Nat Immunol 2001;2:907–916.
40.
Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004;5:987–995.
41.
Remer KA, Brcic M, Jungi TW: Toll-like receptor-4 is involved in eliciting an LPS-induced oxidative burst in neutrophils. Immunol Lett 2003;85:75–80.
42.
Becker M-N, Diamond G, Verghese MW, Randell SH: CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 2000;275:29731–29736.
43.
Hertz C-J, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL: Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 2003;171:6820–6826.
44.
Eisenbarth S-C, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K: Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002;196:1645–1651.
45.
Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S: Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999;11:443–451.
46.
Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT, Medzhitov R, Fikrig E, Flavell RA: Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 2002;8:878–884.
47.
Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001;13:933–940.
48.
Brightbill H-D, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, et al: Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999;285:732–736.
49.
Brown G-D, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S: Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 2003;197:1119–1124.
50.
Gantner B-N, Simmons RM, Canavera SJ, Akira S, Underhill DM: Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 2003;197:1107–1117.
51.
Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, et al: CD36 is a sensor of diacylglycerides. Nature 2005;433:523–527.
52.
Takeuchi O, Hoshino K, Akira S: Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 2000;165:5392–5396.
53.
Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R: Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 2002;186:798–806.
54.
Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, Kirschning CJ: Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 2003;170:438–444.
55.
Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, Kirschning CJ: MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 2004;127:1437–1445.
56.
Mancuso G, Midiri A, Beninati C, Biondo C, Galbo R, Akira S, Henneke P, Golenbock D, Teti G: Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol 2004;172:6324–6329.
57.
Meng G, Rutz M, Schiemann M, Metzger J, Grabiec A, Schwandner R, Luppa PB, Ebel F, Busch DH, Bauer S, et al: Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J Clin Invest 2004;113:1473–1481.
58.
Torres D, Barrier M, Bihl F, Quesniaux VJ, Maillet I, Akira S, Ryffel B, Erard F: Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect Immun 2004;72:2131–2139.
59.
Underhill DM, Ozinsky A: Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002;20:825–852.
60.
Darville T, O’Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM: Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 2003;171:6187–6197.
61.
Wooten R-M, Ma Y, Yoder RA, Brown J-H, Weis JH, Zachary JF, Kirschning CJ, Weis JJ: Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J Immunol 2002;168:348–355.
62.
Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ: Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999;163:3920–3927.
63.
Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa M, Engele M, Sieling P-A, Barnes F, Rollinghoff M, Beleskei PL, Wagner M, et al: Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 2001;291:1544–1547.
64.
Drennan M-B, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, Fremond C, Wagner H, Kirschning CJ, Ryffel B: Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 2004;164:49–57.
65.
Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, Aepfelbacher M, Heesemann J: Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med 2002;196:1017–1024.
66.
Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.
67.
O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB: Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 1980;124:20–24.
68.
Vazquez-Torres A, Vallance BA, Bergman MA, Finlay B, Cookson BT, Jones-Carson J, Fang FC: Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol 2004;172:6202–6208.
69.
Woods J-P, Frelinger JA, Warrack G, Cannon JG: Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect Immun 1988;56:1950–1955.
70.
Hopkins W-J, Gendron-Fitzpatrick E, Balish E, Uehling DT: Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect Immun 1998;66:2798–2802.
71.
Wang X, Moser C, Louboutin JP, Lysenko ES, Weiner DJ, Weiser JN, Wilson JM: Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J Immunol 2002;168:810–815.
72.
Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, Florquin S, van der Poll T: Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 2004;72:788–794.
73.
Campos M-A, Rosinha GM, Almeida IC, Salgueiro XS, Jarvis BW, Splitter GA, Qureshi N, Bruna-Romero O, Gazzinelli RT, Oliveira SC: Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 2004;72:176–186.
74.
Saint Andre A, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L, Taylor MJ, Ford L, Hise AG, Lass JH, et al: The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 2002;295:1892–1895.
75.
Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR, Golenbock DT: Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 2003;100:1966–1971.
76.
Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B: Toll-like receptor 4 expression is required to control chronic Mycobacteriumtuberculosis infection in mice. J Immunol 2002;169:3155–3162.
77.
Branger J, Leemans JC, Florquin S, Weijer S, Speelman P, van der Poll T: Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol 2004;16:509–516.
78.
Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, Ehlers S: Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 2002;169:3480–3484.
79.
Shim T-S, Turner OC, Orme I-M: Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2003;83:367–371.
80.
Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S: A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004;303:1522–1526.
81.
Klaffenbach D, Rascher W, Rollinghoff M, Dotsch J, Meissner U, Schnare M: Regulation and signal transduction of Toll-like receptors in human chorioncarcinoma cell lines. Am J Reprod Immunol 2005;53:77–84.
82.
Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, et al: TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005;308:1626–1629.
83.
Khan A-Q, Chen Q, Wu Z-Q, Paton JC, Snapper CM: Both innate immunity and type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on Toll-like receptor 2. Infect Immun 2005;73:298–307.
84.
Edelson B-T, Unanue ER: MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J Immunol 2002;169:3869–3875.
85.
Weiss D-S, Raupach B, Takeda K, Akira S, Zychlinsky A: Toll-like receptors are temporally involved in host defense. J Immunol 2004;172:4463–4469.
86.
Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998;9:143–150.
87.
Nau G-J, Schlesinger A, Richmond JF, Young RA: Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria. J Immunol 2003;170:5203–5209.
88.
Power M-R, Peng Y, Maydanski E, Marshall JS, Lin TJ: The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 2004;279:49315–49322.
89.
Bolz D-D, Sundsbak RS, Ma Y, Akira S, Kirschning CJ, Zachary JF, Weis JH, Weis JJ: MyD88 plays a unique role in host defense but not arthritis development in Lyme disease. J Immunol 2004;173:2003–2010.
90.
Weighardt H, Kaiser-Moore S, Vabulas RM, Kirschning CJ, Wagner H, Holzmann B: Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J Immunol 2002;169:2823–2827.
91.
Inohara N, Chamaillard M, McDonald C, Nunez G: NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 2005;74:355–383.
92.
Piggott D-A, Eisenbarth SC, Xu L, Constant SL, Huleatt JW, Herrick CA, Bottomly K: MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 2005;115:459–467.
93.
Fremond C-M, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B: Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 2004;114:1790–1799.
94.
Casanova JL, Abel L: Inborn errors of immunity to infection: the rule rather than the exception. J Exp Med 2005;202:197–201.
95.
Medvedev AE, Lentschat A, Kuhns DB, Blanco JC, Salkowski C, Zhang S, Arditi M, Gallin JI, Vogel SN: Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J Exp Med 2003;198:521–531.
96.
Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, et al: Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003;299:2076–2079.
97.
Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, et al: A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J Exp Med 2003;198:1563–1572.
98.
Hawn T-R, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A: Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci USA 2005;102:2487–2489.
99.
Agnese D-M, Calvano E, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF: Human Toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 2002;186:1522–1525.
100.
Lorenz E, Mira JP, Frees KL, Schwartz DA: Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 2002;162:1028–1032.
101.
Smirnova I, Mann N, Dols A, Derkx HH, Hibberd ML, Levin M, Beutler B: Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci USA 2003;100:6075–6080.
102.
Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA: A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000;68:6398–6401.
103.
Ogus A-C, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser L, Coskun M, Cilli A, Yegin O: The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004;23:219–223.
104.
Schroder N-W, Diterich I, Zinke A, Eckert J, Draing C, Baehr VV, Hassler D, Priem S, Hahn K, Michelsen KS, et al: Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 2005;175:2534–2540.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.