Asthma is a common syndrome in children and adults. Despite the increasing prevalence and socioeconomic burden, the underlying pathophysiology remains poorly defined in a large percentage of asthmatics. Animal models and, in particular, murine models of allergic airway disease have helped to reveal some of the potential underlying mechanisms and have played an important role in identifying the importance of T cells and TH2 cytokines in development of allergen-induced inflammation and airway hyperresponsiveness. In addition, other cell types including mast cells and eosinophils have been implicated in the development of some aspects of the disease. To further understand this complex syndrome, the development of animal models which mimic elements of this chronic airway disease is essential.

1.
Mannino DM, Homa DM, Akinbami LJ, Moorman JE, Gwynn C, Redd SC: Surveillance for asthma – United States, 1980–1999. MMWR Surveill Summ 2002;51:1–13.
2.
Jarvis D, Burney P: Epidemiology of asthma; in Asthma and Rhinitis, ed 2. Oxford, Blackwell Science, 2000.
3.
Busse WW, Lemanske RF Jr: Asthma. N Engl J Med 2001;344:350–362.
4.
Cookson W: The alliance of genes and environment in asthma and allergy. Nature 1999;402:B5–B11.
5.
Stein RT, Sherrill D, Morgan WJ, Holberg CJ, Halonen M, Taussig LM, Wright AL, Martinez FD: Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet 1999;354:541–545.
6.
Halonen M, Stern DA, Lohman C, Wright AL, Brown MA, Martinez FD: Two subphenotypes of childhood asthma that differ in maternal and paternal influences on asthma risk. Am J Respir Crit Care Med 1999;160:564–570.
7.
Venables KM, Chan-Yeung M: Occupational asthma. Lancet 1997;349:1465–1469.
8.
Gereda JE, Leung DY, Thatayatikom A, Streib JE, Price MR, Klinnert MD, Liu AH: Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet 2000;355:1680–1683.
9.
Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, et al: Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002;347:869–877.
10.
Platts-Mills T, Vaughan J, Squillace S, Woodfolk J, Sporik R: Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: A population-based cross-sectional study. Lancet 2001;357:752–756.
11.
Lemanske RF Jr, Busse WW: 6. Asthma. J Allergy Clin Immunol 2003;111:S502–S519.
12.
Schneider T, van Velzen D, Moqbel R, Issekutz AC: Kinetics and quantitation of eosinophil and neutrophil recruitment to allergic lung inflammation in a brown Norway rat model. Am J Respir Cell Mol Biol 1997;17:702–712.
13.
Bautsch W, Hoymann HG, Zhang Q, Meier-Wiedenbach I, Raschke U, Ames RS, Sohns B, Flemme N, Meyer zu Vilsendorf A, Grove M, Klos A, Kohl J: Cutting edge: Guinea pigs with a natural C3a-receptor defect exhibit decreased bronchoconstriction in allergic airway disease: Evidence for an involvement of the C3a anaphylatoxin in the pathogenesis of asthma. J Immunol 2000;165:5401–5405.
14.
Colasurdo GN, Hemming VG, Prince GA, Gelfand AS, Loader JE, Larsen GL: Human respiratory syncytial virus produces prolonged alterations of neural control in airways of developing ferrets. Am J Respir Crit Care Med 1998;157:1506–1511.
15.
Evans MJ, Fanucchi MV, Baker GL, Van Winkle LS, Pantle LM, Nishio SJ, Schelegle ES, Gershwin LJ, Miller LA, Hyde DM, Sannes PL, Plopper CG: Atypical development of the tracheal basement membrane zone of infant rhesus monkeys exposed to ozone and allergen. Am J Physiol Lung Cell Mol Physiol 2003;285:L931–L939.
16.
Fairbairn SM, Page CP, Lees P, Cunningham FM: Early neutrophil but not eosinophil or platelet recruitment to the lungs of allergic horses following antigen exposure. Clin Exp Allergy 1993;23:821–828.
17.
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, et al: Initial sequencing and comparative analysis of the mouse genome. Nature 2002;420:520–562.
18.
Mestas J, Hughes CC: Of mice and not men: Differences between mouse and human immunology. J Immunol 2004;172:2731–2738.
19.
Johnson VJ, Matheson JM, Luster MI: Animal models for diisocyanate asthma: Answers for lingering questions. Curr Opin Allergy Clin Immunol 2004;4:105–110.
20.
Herz U, Ruckert R, Wollenhaupt K, Tschernig T, Neuhaus-Steinmetz U, Pabst R, Renz H: Airway exposure to bacterial superantigen (SEB) induces lymphocyte-dependent airway inflammation associated with increased airway responsiveness – A model for non-allergic asthma. Eur J Immunol 1999;29:1021–1031.
21.
Kraneveld AD, van der Kleij HP, Kool M, van Houwelingen AH, Weitenberg AC, Redegeld FA, Nijkamp FP: Key role for mast cells in nonatopic asthma. J Immunol 2002;169:2044–2053.
22.
Takeda K, Hamelmann E, Joetham A, Shultz LD, Larsen GL, Irvin CG, Gelfand EW: Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med 1997;186:449–454.
23.
Tomkinson A, Cieslewicz G, Duez C, Larson KA, Lee JJ, Gelfand EW: Temporal association between airway hyperresponsiveness and airway eosinophilia in ovalbumin-sensitized mice. Am J Respir Crit Care Med 2001;163:721–730.
24.
Taube C, Dakhama A, Rha YH, Takeda K, Joetham A, Park JW, Balhorn A, Takai T, Poch KR, Nick JA, Gelfand EW: Transient neutrophil infiltration after allergen challenge is dependent on specific antibodies and FcgammaIII receptors. J Immunol 2003;170:4301–4309.
25.
Wills-Karp M: Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 1999;17:255–281.
26.
Cieslewicz G, Tomkinson A, Adler A, Duez C, Schwarze J, Takeda K, Larson KA, Lee JJ, Irvin CG, Gelfand EW: The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest 1999;104:301–308.
27.
Crosby JR, Cieslewicz G, Borchers M, Hines E, Carrigan P, Lee JJ, Lee NA: Early phase bronchoconstriction in the mouse requires allergen-specific IgG. J Immunol 2002;168:4050–4054.
28.
Gelfand EW, Joetham A, Cui ZH, Balhorn A, Takeda K, Taube C, Dakhama A: Induction and maintenance of airway responsiveness to allergen challenge are determined at the age of initial sensitization. J Immunol 2004;173:1298–1306.
29.
Sears MR, Greene JM, Willan AR, Wiecek EM, Taylor DR, Flannery EM, Cowan JO, Herbison GP, Silva PA, Poulton R: A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med 2003;349:1414–1422.
30.
Szepfalusi Z, Nentwich I, Gerstmayr M, Jost E, Todoran L, Gratzl R, Herkner K, Urbanek R: Prenatal allergen contact with milk proteins. Clin Exp Allergy 1997;27:28–35.
31.
Prescott SL, Holt PG: Abnormalities in cord blood mononuclear cytokine production as a predictor of later atopic disease in childhood. Clin Exp Allergy 1998;28:1313–1316.
32.
Dakhama A, Kanehiro A, Makela MJ, Loader JE, Larsen GL, Gelfand EW: Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitized and challenged mice. Am J Respir Crit Care Med 2002;165:1137–1144.
33.
Kanehiro A, Ikemura T, Makela MJ, Lahn M, Joetham A, Dakhama A, Gelfand EW: Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am J Respir Crit Care Med 2001;163:173–184.
34.
Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW, Balhorn A, Donaldson DD, Dakhama A, Gelfand EW: The role of IL-13 in established allergic airway disease. J Immunol 2002;169:6482–6489.
35.
Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: Central mediator of allergic asthma. Science 1998;282:2258–2261.
36.
Williams CM, Galli SJ: Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med 2000;192:455–462.
37.
Nakae S, Komiyama Y, Yokoyama H, Nambu A, Umeda M, Iwase M, Homma I, Sudo K, Horai R, Asano M, Iwakura Y: IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol 2003;15:483–490.
38.
Renz H, Smith HR, Henson JE, Ray BS, Irvin CG, Gelfand EW: Aerosolized antigen exposure without adjuvant causes increased IgE production and increased airway responsiveness in the mouse. J Allergy Clin Immunol 1992;89:1127–1138.
39.
Hamelmann E, Oshiba A, Paluh J, Bradley K, Loader J, Potter TA, Larsen GL, Gelfand EW: Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a murine model of airway sensitization. J Exp Med 1996;183:1719–1729.
40.
Shinagawa K, Kojima M: Mouse model of airway remodeling: Strain differences. Am J Respir Crit Care Med 2003;168:959–967.
41.
Hahn C, Teufel M, Herz U, Renz H, Erb KJ, Wohlleben G, Brocker EB, Duschl A, Sebald W, Grunewald SM: Inhibition of the IL-4/IL-13 receptor system prevents allergic sensitization without affecting established allergy in a mouse model for allergic asthma. J Allergy Clin Immunol 2003;111:1361–1369.
42.
Yu CK, Shieh CM, Lei HY: Repeated intratracheal inoculation of house dust mite (Dermatophagoides farinae) induces pulmonary eosinophilic inflammation and IgE antibody production in mice. J Allergy Clin Immunol 1999;104:228–236.
43.
Lambrecht BN, De Veerman M, Coyle AJ, Gutierrez-Ramos JC, Thielemans K, Pauwels RA: Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 2000;106:551–559.
44.
Lambrecht BN, Pauwels RA, Fazekas De St Groth B: Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J Immunol 2000;164:2937–2946.
45.
Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB: Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992;326:298–304.
46.
Bentley AM, Maestrelli P, Saetta M, Fabbri LM, Robinson DS, Bradley BL, Jeffery PK, Durham SR, Kay AB: Activated T-lymphocytes and eosinophils in the bronchial mucosa in isocyanate-induced asthma. J Allergy Clin Immunol 1992;89:821–829.
47.
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348–2357.
48.
Gavett SH, Chen X, Finkelman F, Wills-Karp M: Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 1994;10:587–593.
49.
Gonzalo JA, Lloyd CM, Kremer L, Finger E, Martinez AC, Siegelman MH, Cybulsky M, Gutierrez-Ramos JC: Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. J Clin Invest 1996;98:2332–2345.
50.
Haile S, Lefort J, Joseph D, Gounon P, Huerre M, Vargaftig BB: Mucous-cell metaplasia and inflammatory-cell recruitment are dissociated in allergic mice after antibody- and drug-dependent cell depletion in a murine model of asthma. Am J Respir Cell Mol Biol 1999;20:891–902.
51.
Chapoval SP, Marietta EV, Smart MK, David CS: Requirements for allergen-induced airway inflammation and hyperreactivity in CD4-deficient and CD4-sufficient HLA-DQ transgenic mice. J Allergy Clin Immunol 2001;108:764–771.
52.
Komai M, Tanaka H, Masuda T, Nagao K, Ishizaki M, Sawada M, Nagai H: Role of Th2 responses in the development of allergen-induced airway remodelling in a murine model of allergic asthma. Br J Pharmacol 2003;138:912–920.
53.
Cohn L, Homer RJ, Marinov A, Rankin J, Bottomly K: Induction of airway mucus production by T helper 2 (Th2) cells: A critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 1997;186:1737–1747.
54.
Kuperman D, Schofield B, Wills-Karp M, Grusby MJ: Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 1998;187:939–948.
55.
Tomkinson A, Kanehiro A, Rabinovitch N, Joetham A, Cieslewicz G, Gelfand EW: The failure of STAT6-deficient mice to develop airway eosinophilia and airway hyperresponsiveness is overcome by interleukin-5. Am J Respir Crit Care Med 1999;160:1283–1291.
56.
Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, Ackerman K, Haley K, Galle PR, Szabo SJ, Drazen JM, De Sanctis GT, Glimcher LH: Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002;295:336–338.
57.
Kuo CT, Leiden JM: Transcriptional regulation of T lymphocyte development and function. Annu Rev Immunol 1999;17:149–187.
58.
Zhang DH, Yang L, Cohn L, Parkyn L, Homer R, Ray P, Ray A: Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 1999;11:473–482.
59.
Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, Renz H, Neurath MF: Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med 2001;193:1247–1260.
60.
Gavett SH, Chen X, Finkelman F, Wills-Karp M: Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 1994;10:587–593.
61.
Renz H, Saloga J, Bradley KL, Loader JE, Greenstein JL, Larsen G, Gelfand EW: Specific V beta T cell subsets mediate the immediate hypersensitivity response to ragweed allergen. J Immunol 1993;151:1907–1917.
62.
Hogan SP, Koskinen A, Matthaei KI, Young IG, Foster PS: Interleukin-5-producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am J Respir Crit Care Med 1998;157:210–218.
63.
Cohn L, Homer RJ, MacLeod H, Mohrs M, Brombacher F, Bottomly K: Th2-induced airway mucus production is dependent on IL-4Ralpha, but not on eosinophils. J Immunol 1999;162:6178–6183.
64.
Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A: A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2001;2:45–50.
65.
Zimmermann N, Hogan SP, Mishra A, Brandt EB, Bodette TR, Pope SM, Finkelman FD, Rothenberg ME: Murine eotaxin-2: A constitutive eosinophil chemokine induced by allergen challenge and IL-4 overexpression. J Immunol 2000;165:5839–5846.
66.
Rothenberg ME, Zimmermann N, Mishra A, Brandt E, Birkenberger LA, Hogan SP, Foster PS: Chemokines and chemokine receptors: Their role in allergic airway disease. J Clin Immunol 1999;19:250–265.
67.
Gonzalez MC, Diaz P, Galleguillos FR, Ancic P, Cromwell O, Kay AB: Allergen-induced recruitment of bronchoalveolar helper (OKT4) and suppressor (OKT8) T-cells in asthma. Relative increases in OKT8 cells in single early responders compared with those in late-phase responders. Am Rev Respir Dis 1987;136:600–604.
68.
Miyata S, Matsuyama T, Kodama T, Nishioka Y, Kuribayashi K, Takeda K, Akira S, Sugita M: STAT6 deficiency in a mouse model of allergen-induced airways inflammation abolishes eosinophilia but induces infiltration of CD8+ T cells. Clin Exp Allergy 1999;29:114–123.
69.
Miyahara N, Takeda K, Kodama T, Joetham A, Taube C, Park JW, Miyahara S, Balhorn A, Dakhama A, Gelfand EW: Contribution of antigen-primed CD8(+) T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 2004;172:2549–2558.
70.
Seder RA, Boulay JL, Finkelman F, Barbier S, Ben-Sasson SZ, Le Gros G, Paul WE: CD8+ T cells can be primed in vitro to produce IL-4. J Immunol 1992;148:1652–1656.
71.
Erard F, Wild MT, Garcia-Sanz JA, Le Gros G: Switch of CD8 T cells to noncytolytic CD8–CD4– cells that make TH2 cytokines and help B cells. Science 1993;260:1802–1805.
72.
Croft M, Carter L, Swain SL, Dutton RW: Generation of polarized antigen-specific CD8 effector populations: Reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med 1994;180:1715–1728.
73.
Coyle AJ, Erard F, Bertrand C, Walti S, Pircher H, Le Gros G: Virus-specific CD8+ cells can switch to interleukin 5 production and induce airway eosinophilia. J Exp Med 1995;181:1229–1233.
74.
Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401:708–712.
75.
Masopust D, Vezys V, Marzo AL, Lefrancois L: Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001;291:2413–2417.
76.
Weninger W, Crowley MA, Manjunath N, von Andrian UH: Migratory properties of naive, effector, and memory CD8(+) T cells. J Exp Med 2001;194:953–966.
77.
Manjunath N, Shankar P, Wan J, Weninger W, Crowley MA, Hieshima K, Springer TA, Fan X, Shen H, Lieberman J, von Andrian UH: Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest 2001;108:871–878.
78.
Ott VL, Cambier JC, Kappler J, Marrack P, Swanson BJ: Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat Immunol 2003;4:974–981.
79.
Miyahara N, Swanson BJ, Takeda K, Taube C, Miyahara S, Kodama T, Dakhama A, Ott VL, Gelfand EW: Effector CD8(+) T cells mediate inflammation and airway hyper-responsiveness. Nat Med 2004;10:865–869.
80.
McMenamin C, Pimm C, McKersey M, Holt PG: Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science 1994;265:1869–1871.
81.
McMenamin C, McKersey M, Kuhnlein P, Hunig T, Holt PG: Gamma delta T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J Immunol 1995;154:4390–4394.
82.
Lahn M, Kanehiro A, Takeda K, Joetham A, Schwarze J, Kohler G, O’Brien R, Gelfand EW, Born W, Kanehio A: Negative regulation of airway responsiveness that is dependent on gammadelta T cells and independent of alphabeta T cells. Nat Med 1999;5:1150–1156.
83.
Kanehiro A, Lahn M, Makela MJ, Dakhama A, Fujita M, Joetham A, Mason RJ, Born W, Gelfand EW: Tumor necrosis factor-alpha negatively regulates airway hyperresponsiveness through gamma-delta T cells. Am J Respir Crit Care Med 2001;164:2229–2238.
84.
Kanehiro A, Lahn M, Makela MJ, Dakhama A, Joetham A, Rha YH, Born W, Gelfand EW: Requirement for the p75 TNF-alpha receptor 2 in the regulation of airway hyperresponsiveness by gamma delta T cells. J Immunol 2002;169:4190–4197.
85.
Lahn M, Kalataradi H, Mittelstadt P, Pflum E, Vollmer M, Cady C, Mukasa A, Vella AT, Ikle D, Harbeck R, O’Brien R, Born W: Early preferential stimulation of gamma delta T cells by TNF-alpha. J Immunol 1998;160:5221–5230.
86.
Sim GK, Rajaserkar R, Dessing M, Augustin A: Homing and in situ differentiation of resident pulmonary lymphocytes. Int Immunol 1994;6:1287–1295.
87.
Lahn M, Kanehiro A, Takeda K, Terry J, Hahn YS, Aydintug MK, Konowal A, Ikuta K, O’Brien RL, Gelfand EW, Born WK: MHC class I-dependent Vgamma4+ pulmonary T cells regulate alpha beta T cell-independent airway responsiveness. Proc Natl Acad Sci USA 2002;99:8850–8855.
88.
Hahn YS, Taube C, Jin N, Sharp L, Wands JM, Aydintug MK, Lahn M, Huber SA, O’Brien RL, Gelfand EW, Born WK: Different potentials of gammadelta T cell subsets in regulating airway responsiveness: Vgamma1+ cells, but not Vgamma4+ cells, promote airway hyperreactivity, Th2 cytokines, and airway inflammation. J Immunol 2004;172:2894–2902.
89.
Hahn YS, Taube C, Jin N, Takeda K, Park JW, Wands JM, Aydintug MK, Roark CL, Lahn M, O’Brien RL, Gelfand EW, Born WK: V gamma 4+ gamma delta T cells regulate airway hyperreactivity to methacholine in ovalbumin-sensitized and challenged mice. J Immunol 2003;171:3170–3178.
90.
Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels RA, Bluethmann H: Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 1994;24:73–80.
91.
Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE: The IL-4 receptor: Signaling mechanisms and biologic functions. Annu Rev Immunol 1999;17:701–738.
92.
Voehringer D, Shinkai K, Locksley RM: Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 2004;20:267–277.
93.
Coyle AJ, Le Gros G, Bertrand C, Tsuyuki S, Heusser CH, Kopf M, Anderson GP: Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am J Respir Cell Mol Biol 1995;13:54–59.
94.
Henderson WR Jr, Chi EY, Maliszewski CR: Soluble IL-4 receptor inhibits airway inflammation following allergen challenge in a mouse model of asthma. J Immunol 2000;164:1086–1095.
95.
Cohn L, Tepper JS, Bottomly K: IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol 1998;161:3813–3816.
96.
Tomkinson A, Duez C, Cieslewicz G, Pratt JC, Joetham A, Shanafelt MC, Gundel R, Gelfand EW: A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J Immunol 2001;166:5792–5800.
97.
de Vries JE: The role of IL-13 and its receptor in allergy and inflammatory responses. J Allergy Clin Immunol 1998;102:165–169.
98.
Wills-Karp M: IL-12/IL-13 axis in allergic asthma. J Allergy Clin Immunol 2001;107:9–18.
99.
McKenzie GJ, Emson CL, Bell SE, Anderson S, Fallon P, Zurawski G, Murray R, Grencis R, McKenzie AN: Impaired development of Th2 cells in IL-13-deficient mice. Immunity 1998;9:423–432.
100.
Coyle AJ, Le Gros G, Bertrand C, Tsuyuki S, Heusser CH, Kopf M, Anderson GP: Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am J Respir Cell Mol Biol 1995;13:54–59.
101.
Corry DB, Folkesson HG, Warnock ML, Erle DJ, Matthay MA, Wiener-Kronish JP, Locksley RM: Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med 1996;183:109–117.
102.
Hogan SP, Mould A, Kikutani H, Ramsay AJ, Foster PS: Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J Clin Invest 1997;99:1329–1339.
103.
Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB: Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998;282:2261–2263.
104.
Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, Umetsu DT: Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 2001;167:4668–4675.
105.
Webb DC, McKenzie AN, Koskinen AM, Yang M, Mattes J, Foster PS: Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol 2000;165:108–113.
106.
Webb DC, Matthaei KI, Cai Y, McKenzie AN, Foster PS: Polymorphisms in IL-4R alpha correlate with airways hyperreactivity, eosinophilia, and Ym protein expression in allergic IL-13–/– mice. J Immunol 2004;172:1092–1098.
107.
Mattes J, Yang M, Siqueira A, Clark K, MacKenzie J, McKenzie AN, Webb DC, Matthaei KI, Foster PS: IL-13 induces airways hyperreactivity independently of the IL-4R alpha chain in the allergic lung. J Immunol 2001;167:1683–1692.
108.
Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999;103:779–788.
109.
Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA: Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001;194:809–821.
110.
Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, Chen Q, Homer RJ, Wang J, Rabach LA, Rabach ME, Shipley JM, Shapiro SD, Senior RM, et al: Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J Clin Invest 2002;110:463–474.
111.
Blackburn MR, Lee CG, Young HW, Zhu Z, Chunn JL, Kang MJ, Banerjee SK, Elias JA: Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway. J Clin Invest 2003;112:332–344.
112.
Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA: Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004;304:1678–1682.
113.
Temann UA, Geba GP, Rankin JA, Flavell RA: Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 1998;188:1307–1320.
114.
Temann UA, Ray P, Flavell RA: Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J Clin Invest 2002;109:29–39.
115.
Tomaki M, Zhao LL, Lundahl J, Sjostrand M, Jordana M, Linden A, O’Byrne P, Lotvall J: Eosinophilopoiesis in a murine model of allergic airway eosinophilia: Involvement of bone marrow IL-5 and IL-5 receptor alpha. J Immunol 2000;165:4040–4050.
116.
Mould AW, Ramsay AJ, Matthaei KI, Young IG, Rothenberg ME, Foster PS: The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. J Immunol 2000;164:2142–2150.
117.
Hamelmann E, Oshiba A, Loader J, Larsen GL, Gleich G, Lee J, Gelfand EW: Antiinterleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am J Respir Crit Care Med 1997;155:819–825.
118.
Hamelmann E, Cieslewicz G, Schwarze J, Ishizuka T, Joetham A, Heusser C, Gelfand EW: Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness. Am J Respir Crit Care Med 1999;160:934–941.
119.
Hamelmann E, Takeda K, Haczku A, Cieslewicz G, Shultz L, Hamid Q, Xing Z, Gauldie J, Gelfand EW: Interleukin (IL)-5 but not immunoglobulin E reconstitutes airway inflammation and airway hyperresponsiveness in IL-4-deficient mice. Am J Respir Cell Mol Biol 2000;23:327–334.
120.
Justice JP, Crosby J, Borchers MT, Tomkinson A, Lee JJ, Lee NA: CD4(+) T cell-dependent airway mucus production occurs in response to IL-5 expression in lung. Am J Physiol Lung Cell Mol Physiol 2002;282:L1066–L1074.
121.
Mattes J, Yang M, Mahalingam S, Kuehr J, Webb DC, Simson L, Hogan SP, Koskinen A, McKenzie AN, Dent LA, Rothenberg ME, Matthaei KI, Young IG, Foster PS: Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J Exp Med 2002;195:1433–1444.
122.
Grunstein MM, Hakonarson H, Leiter J, Chen M, Whelan R, Grunstein JS, Chuang S: IL-13-dependent autocrine signaling mediates altered responsiveness of IgE-sensitized airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2002;282:L520–L528.
123.
Burd PR, Thompson WC, Max EE, Mills FC: Activated mast cells produce interleukin 13. J Exp Med 1995;181:1373–1380.
124.
Stassen M, Muller C, Arnold M, Hultner L, Klein-Hessling S, Neudorfl C, Reineke T, Serfling E, Schmitt E: IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-kappa B is decisively involved in the expression of IL-9. J Immunol 2001;166:4391–4398.
125.
Masuda A, Yoshikai Y, Aiba K, Matsuguchi T: Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways. J Immunol 2002;169:3801–3810.
126.
Hoshino T, Winkler-Pickett RT, Mason AT, Ortaldo JR, Young HA: IL-13 production by NK cells: IL-13-producing NK and T cells are present in vivo in the absence of IFN-gamma. J Immunol 1999;162:51–59.
127.
Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT: Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 2003;9:582–588.
128.
Turner H, Kinet JP: Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 1999;402:B24–30.
129.
Ikeda RK, Miller M, Nayar J, Walker L, Cho JY, McElwain K, McElwain S, Raz E, Broide DH: Accumulation of peribronchial mast cells in a mouse model of ovalbumin allergen induced chronic airway inflammation: Modulation by immunostimulatory DNA sequences. J Immunol 2003;171:4860–4867.
130.
Kung TT, Stelts D, Zurcher JA, Jones H, Umland SP, Kreutner W, Egan RW, Chapman RW: Mast cells modulate allergic pulmonary eosinophilia in mice. Am J Respir Cell Mol Biol 1995;12:404–409.
131.
Ogawa K, Kaminuma O, Kikkawa H, Kameda R, Ikezawa K, Suko M, Okudaira H, Akiyama K, Mori A: Primary role of CD4+ T cells and supplemental role of mast cells in allergic pulmonary eosinophilia. Int Arch Allergy Immunol 1999;120(suppl 1):15–18.
132.
Nogami M, Suko M, Okudaira H, Miyamoto T, Shiga J, Ito M, Kasuya S: Experimental pulmonary eosinophilia in mice by Ascaris suum extract. Am Rev Respir Dis 1990;141:1289–1295.
133.
Hamelmann E, Takeda K, Schwarze J, Vella AT, Irvin CG, Gelfand EW: Development of eosinophilic airway inflammation and airway hyperresponsiveness requires interleukin-5 but not immunoglobulin E or B lymphocytes. Am J Respir Cell Mol Biol 1999;21:480–489.
134.
Mehlhop PD, van de Rijn M, Goldberg AB, Brewer JP, Kurup VP, Martin TR, Oettgen HC: Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci USA 1997;94:1344–1349.
135.
Mayr SI, Zuberi RI, Zhang M, de Sousa-Hitzler J, Ngo K, Kuwabara Y, Yu L, Fung-Leung WP, Liu FT: IgE-dependent mast cell activation potentiates airway responses in murine asthma models. J Immunol 2002;169:2061–2068.
136.
Taube C, Wei X, Swasey CH, Joetham A, Zarini S, Lively T, Takeda K, Loader J, Miyahara N, Kodama T, Shultz LD, Donaldson DD, Hamelmann EH, Dakhama A, et al: Mast cells, FcepsilonRI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J Immunol 2004;172:6398–6406.
137.
Kips JC, Anderson GP, Fredberg JJ, Herz U, Inman MD, Jordana M, Kemeny DM, Lotvall J, Pauwels RA, Plopper CG, Schmidt D, Sterk PJ, Van Oosterhout AJ, Vargaftig BB, et al: Murine models of asthma. Eur Respir J 2003;22:374–382.
138.
Jeffery PK: Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 2001;164:S28–S38.
139.
Lazaar AL, Panettieri RA Jr: Is airway remodeling clinically relevant in asthma? Am J Med 2003;115:652–659.
140.
Yiamouyiannis CA, Schramm CM, Puddington L, Stengel P, Baradaran-Hosseini E, Wolyniec WW, Whiteley HE, Thrall RS: Shifts in lung lymphocyte profiles correlate with the sequential development of acute allergic and chronic tolerant stages in a murine asthma model. Am J Pathol 1999;154:1911–1921.
141.
Cui ZH, Joetham A, Aydintug MK, Hahn YS, Born WK, Gelfand EW: Reversal of allergic airway hyperreactivity after long-term allergen challenge depends on gammadelta T cells. Am J Respir Crit Care Med 2003;168:1324–1332.
142.
Schramm CM, Puddington L, Wu C, Guernsey L, Gharaee-Kermani M, Phan SH, Thrall RS: Chronic inhaled ovalbumin exposure induces antigen-dependent but not antigen-specific inhalational tolerance in a murine model of allergic airway disease. Am J Pathol 2004;164:295–304.
143.
Temelkovski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK: An improved murine model of asthma: Selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 1998;53:849–856.
144.
Sakai K, Yokoyama A, Kohno N, Hamada H, Hiwada K: Prolonged antigen exposure ameliorates airway inflammation but not remodeling in a mouse model of bronchial asthma. Int Arch Allergy Immunol 2001;126:126–134.
145.
Henderson WR Jr, Tang LO, Chu SJ, Tsao SM, Chiang GK, Jones F, Jonas M, Pae C, Wang H, Chi EY: A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 2002;165:108–116.
146.
Ikeda RK, Nayar J, Cho JY, Miller M, Rodriguez M, Raz E, Broide DH: Resolution of airway inflammation following ovalbumin inhalation: Comparison of ISS DNA and corticosteroids. Am J Respir Cell Mol Biol 2003;28:655–663.
147.
Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, McElwain K, McElwain S, Friedman S, Broide DH: Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest 2004;113:551–560.
148.
Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, O’Byrne PM, Inman MD: Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med 2004;169:860–867.
149.
Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, Coyle AJ, Gutierrez-Ramos JC, Ellis R, Inman MD, Jordana M: Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 2004;169:378–385.
150.
Elias JA, Zheng T, Lee CG, Homer RJ, Chen Q, Ma B, Blackburn M, Zhu Z: Transgenic modeling of interleukin-13 in the lung. Chest 2003;123:339S–345S.
151.
Hogaboam CM, Blease K, Mehrad B, Steinhauser ML, Standiford TJ, Kunkel SL, Lukacs NW: Chronic airway hyperreactivity, goblet cell hyperplasia, and peribronchial fibrosis during allergic airway disease induced by Aspergillus fumigatus. Am J Pathol 2000;156:723–732.
152.
Walter MJ, Morton JD, Kajiwara N, Agapov E, Holtzman MJ: Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. J Clin Invest 2002;110:165–175.
153.
Takeda K, Haczku A, Lee JJ, Irvin CG, Gelfand EW: Strain dependence of airway hyperresponsiveness reflects differences in eosinophil localization in the lung. Am J Physiol Lung Cell Mol Physiol 2001;281:L394–L402.
154.
Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, Coyle AJ, Gutierrez-Ramos JC, Ellis R, Inman MD, Jordana M: Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 2004;169:378–385.
155.
Magnussen H, Richter K, Taube C: Are chronic obstructive pulmonary disease (COPD) and asthma different diseases? Clin Exp Allergy 1998;28(suppl 5):187–194, 203–205.
156.
Pitchford SC, Riffo-Vasquez Y, Sousa A, Momi S, Gresele P, Spina D, Page CP: Platelets are necessary for airway wall remodeling in a murine model of chronic allergic inflammation. Blood 2004;103:639–647.
157.
Masoli M, Fabian D, Holt S, Beasley R: The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy 2004;59:469–478.
158.
Dakhama A, Gelfand EW: Development and Inhibition of Th2 Responses: Realization of Therapeutic Targets; in Agosti, JM and Sheffer AL (eds): Biotherapeutic Approaches to Asthma. New York, Marcel Dekker, 2002, pp 247–291.
159.
Holtzman MJ: Drug development for asthma. Am J Respir Cell Mol Biol 2003;29:163–171.
160.
Bryan SA, O’Connor BJ, Matti S, Leckie MJ, Kanabar V, Khan J, Warrington SJ, Renzetti L, Rames A, Bock JA, Boyce MJ, Hansel TT, Holgate ST, Barnes PJ: Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000;356:2149–2153.
161.
Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ: Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000;356:2144–2148.
162.
O’Byrne PM, Inman MD, Parameswaran K: The trials and tribulations of IL-5, eosinophils, and allergic asthma. J Allergy Clin Immunol 2001;108:503–508.
163.
Persson CG: Con: Mice are not a good model of human airway disease. Am J Respir Crit Care Med 2002;166:6–8.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.