Background: Type 1 diabetes (T1D) is a chronic condition that requires significant daily self-management and long-term clinical care, involving insulin therapy, glucose monitoring, dietary control and education. The majority of tasks associated with diabetes care are becoming amenable to the application of artificial intelligence (AI) driven clinical decision support systems (AI-CDSS). By integrating data from multiple sources, including smartphone apps, smart watches, activity trackers, continuous glucose monitors (CGM), insulin pumps and smartpens, AI-CDSS can support people with T1D to make daily self-management of T1D more personalized, more predictive and more proactive. For healthcare professionals (HCPs), AI-CDSS are already changing approaches to risk prediction, detection and assessment of presymptomatic T1D. When necessary, AI-CDSS can help HCPs to prioritize necessary clinical management approaches for people with T1D, as well as streamlining service delivery and allocating resources more effectively. Summary: AI technologies are anticipated to provide valuable support for people with T1D in their daily life with diabetes. Equally, AI-CDSS can have high value for HCPs and healthcare services in the screening, monitoring and management of T1D. However, these benefits will require that AI-driven tools become part of routine clinical care for people with T1D and their HCPs, including validation in clinical studies and regulatory pathways. Just as important is the need for training and education in the application of AI-CDSS to achieve the outcomes that match the significant potential of these technologies. Key Messages: AI technologies have the capability to provide data-driven, personalized treatment recommendations for people with T1D. AI-CDSS can assist HCPs by analyzing patient data to offer insights and recommendations for treatment adjustment in T1D, on an individual basis. To realize the promise of AI-CDSS in T1D, significant challenges exist for the trust and adoption of these AI-driven tools, as well as ensuring equity of access and application, clinical efficacy and regulatory compliance.

1.
GBD 2021 Diabetes Collaborators
,
Ong
KL
,
Stafford
LK
.
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
.
Lancet
.
2023
;
402
(
10397
):
203
34
.
2.
Ogle
GD
,
Wang
F
,
Gregory
GA
,
Maniam
J
.
Type 1 diabetes estimates in children and adults
:
International Diabetes Federation
;
2022
.
3.
Hill-Briggs
F
,
Adler
NE
,
Berkowitz
SA
,
Chin
MH
,
Gary-Webb
TL
,
Navas-Acien
A
, et al
.
Social determinants of health and diabetes: a scientific review
.
Diabetes Care
.
2020
;
44
(
1
):
258
79
.
4.
Ogunwole
SM
,
Golden
SH
.
Social determinants of health and structural inequities: root causes of diabetes disparities
.
Diabetes Care
.
2021
;
44
(
1
):
11
3
.
5.
Association of American Medical Colleges
.
The complexities of physician supply and demand: projections from 2021 to 2036
.
2024
.
6.
Patel
R
.
What is a diabetes decision
.
Now patient
.
2023
. https://nowpatient.com/blog/what-is-a-diabetes-decision (accessed January 8, 2025).
7.
Jendle
J
,
Adolfsson
P
,
Choudhary
P
,
Dovc
K
,
Fleming
A
,
Klonoff
DC
, et al
.
A narrative commentary about interoperability in medical devices and data used in diabetes therapy from an academic EU/UK/US perspective
.
Diabetologia
.
2024
;
67
(
2
):
236
45
.
8.
Fleming
GA
,
Petrie
JR
,
Bergenstal
RM
,
Holl
RW
,
Peters
AL
,
Heinemann
L
.
Diabetes digital app technology: benefits, challenges, and recommendations. A consensus report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group
.
Diabetologia
.
2020
;
63
(
2
):
229
41
.
9.
Edelman
S
,
Cheatham
WW
,
Norton
A
,
Close
KL
.
Patient perspectives on the benefits and challenges of diabetes and digital technology
.
Clin Diabetes
.
2024
;
42
(
2
):
243
56
.
10.
Tanenbaum
ML
,
Commissariat
PV
.
Barriers and facilitators to diabetes device adoption for people with type 1 diabetes
.
Curr Diab Rep
.
2022
;
22
(
7
):
291
9
.
11.
Papadakis
JL
,
Anderson
LM
,
Garza
K
,
Feldman
MA
,
Shapiro
JB
,
Evans
M
, et al
.
Psychosocial aspects of diabetes technology use the child and family perspective
.
Endocrinol Metab Clin North Am
.
2020
;
49
(
1
):
127
41
.
12.
American Diabetes Association Professional Practice Committee
,
ElSayed
NA
,
Aleppo
G
.
9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes-2024
.
Diabetes Care
.
2024
;
47
(
Suppl 1
):
S158
78
.
13.
Holt
RIG
,
DeVries
JH
,
Hess-Fischl
A
,
Hirsch
IB
,
Kirkman
MS
,
Klupa
T
, et al
.
The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
.
Diabetologia
.
2021
;
64
(
12
):
2609
52
.
14.
American Diabetes Association Professional Practice Committee
,
ElSayed
NA
,
Aleppo
G
.
14. Children and adolescents: standards of care in diabetes-2024
.
Diabetes Care
.
2024
;
47
(
Suppl 1
):
S258
81
.
15.
Corathers
SD
,
DeSalvo
DJ
.
Therapeutic inertia in pediatric diabetes: challenges to and strategies for overcoming acceptance of the status quo
.
Diabetes Spectr
.
2020
;
33
(
1
):
22
30
.
16.
Khalifa
M
,
Albadawy
M
.
Artificial intelligence for diabetes: enhancing prevention, diagnosis, and effective management
.
Comput Methods Programs Biomed Updat
.
2024
;
5
:
100141
.
17.
Harrison
RM
,
Lapteva
E
,
Bibin
A
.
Behavioral nudging with generative AI for content development in SMS health care interventions: case study
.
JMIR
.
2024
;
3
:
e52974
.
18.
Huang
S
,
Liang
Y
,
Li
J
,
Li
X
.
Applications of clinical decision support systems in diabetes care: scoping review
.
J Med Internet Res
.
2023
;
25
:
e51024
.
19.
Clinical Decision Support Assistant Secretary for Technology Policy/Office of the National Coordinator for Health IT
. https://www.healthit.gov/policy-researchers-implementers/clinical-decision-support-cds (accessed October 8, 2024).
20.
Ackermann
K
,
Baker
J
,
Green
M
,
Fullick
M
,
Varinli
H
,
Westbrook
J
, et al
.
Computerized clinical decision support systems for the early detection of sepsis among adult inpatients: scoping review
.
J Med Internet Res
.
2022
;
24
(
2
):
e31083
.
21.
Sutton
RT
,
Pincock
D
,
Baumgart
DC
,
Sadowski
DC
,
Fedorak
RN
,
Kroeker
KI
.
An overview of clinical decision support systems: benefits, risks, and strategies for success
.
Npj Digit Med
.
2020
;
3
(
1
):
17
.
22.
Kovatchev
B
,
Castillo
A
,
Pryor
E
,
Kollar
LL
,
Barnett
CL
,
DeBoer
MD
, et al
.
Neural-net artificial Pancreas: a randomized crossover trial of a first-in-class automated insulin delivery algorithm
.
Diabetes Technol Ther
.
2024
;
26
(
6
):
375
82
.
23.
Hassan
S
,
Gujral
UP
,
Quarells
RC
,
Rhodes
EC
,
Shah
MK
,
Obi
J
, et al
.
Disparities in diabetes prevalence and management by race and ethnicity in the USA: defining a path forward
.
Lancet Diabetes Endocrinol
.
2023
;
11
(
7
):
509
24
.
24.
Gurevich
E
,
Hassan
BE
,
Morr
CE
.
Equity within AI systems: what can health leaders expect
.
Healthc Manag Forum
.
2023
;
36
(
2
):
119
24
.
25.
Teixeira
PF
,
Battelino
T
,
Carlsson
A
,
Gudbjörnsdottir
S
,
Hannelius
U
,
von Herrath
M
, et al
.
Assisting the implementation of screening for type 1 diabetes by using artificial intelligence on publicly available data
.
Diabetologia
.
2024
;
67
(
6
):
985
94
.
26.
Daniel
R
,
Jones
H
,
Gregory
JW
,
Shetty
A
,
Francis
N
,
Paranjothy
S
, et al
.
Predicting type 1 diabetes in children using electronic health records in primary care in the UK: development and validation of a machine-learning algorithm
.
Lancet Digit Heal
.
2024
;
6
(
6
):
e386
95
.
27.
Herold
KC
,
Bundy
BN
,
Long
SA
,
Bluestone
JA
,
DiMeglio
LA
,
Dufort
MJ
, et al
.
An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes
.
N Engl J Med
.
2019
;
381
(
7
):
603
13
.
28.
Krischer
JP
,
Liu
X
,
Lernmark
Å
,
Hagopian
WA
,
Rewers
MJ
,
She
JX
, et al
.
Predictors of the initiation of islet autoimmunity and progression to multiple autoantibodies and clinical diabetes: the TEDDY study
.
Diabetes Care
.
2022
;
45
(
10
):
2271
81
.
29.
Nakayasu
ES
,
Bramer
LM
,
Ansong
C
,
Schepmoes
AA
,
Fillmore
TL
,
Gritsenko
MA
, et al
.
Plasma protein biomarkers predict the development of persistent autoantibodies and type 1 diabetes 6 months prior to the onset of autoimmunity
.
Cell Rep Med
.
2023
;
4
(
7
):
101093
.
30.
Prahalad
P
,
Scheinker
D
,
Desai
M
,
Ding
VY
,
Bishop
FK
,
Lee
MY
, et al
.
Equitable implementation of a precision digital health program for glucose management in individuals with newly diagnosed type 1 diabetes
.
Nat Med
.
2024
;
30
(
7
):
2067
75
.
31.
Nimri
R
.
Decision support systems for insulin treatment adjustment in people with type 1 diabetes
.
Pediatr Endocrinol Rev
.
2020
;
17
(
Suppl 1
):
170
82
.
32.
Vega-López
S
,
Ausman
LM
,
Griffith
JL
,
Lichtenstein
AH
.
Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread
.
Diabetes Care
.
2007
;
30
(
6
):
1412
7
.
33.
Amugongo
LM
,
Kriebitz
A
,
Boch
A
,
Lütge
C
.
Mobile computer vision-based applications for food recognition and volume and calorific estimation: a systematic review
.
Healthcare
.
2022
;
11
(
1
):
59
.
34.
Baumgartner
M
,
Kuhn
C
,
Nakas
CT
,
Herzig
D
,
Bally
L
.
Carbohydrate estimation accuracy of two commercially available smartphone applications vs estimation by individuals with type 1 diabetes: a comparative study
.
J Diabetes Sci Technol
.
2024
:
19322968241264744
.
35.
Rhyner
D
,
Loher
H
,
Dehais
J
,
Anthimopoulos
M
,
Shevchik
S
,
Botwey
RH
, et al
.
Carbohydrate estimation by a mobile phone-based system versus self-estimations of individuals with type 1 diabetes mellitus: a comparative study
.
J Med Internet Res
.
2016
;
18
(
5
):
e101
.
36.
Lee
Y-B
,
Kim
G
,
Jun
JE
,
Park
H
,
Lee
WJ
,
Hwang
YC
, et al
.
An integrated digital health care platform for diabetes management with AI-based dietary management: 48-week results from a randomized controlled trial
.
Diabetes Care
.
2023
;
46
(
5
):
959
66
.
37.
Perkins
BA
,
Turner
LV
,
Riddell
MC
.
Applying technologies to simplify strategies for exercise in type 1 diabetes
.
Diabetologia
.
2024
;
67
(
10
):
2045
58
.
38.
Reddy
R
,
Resalat
N
,
Wilson
LM
,
Castle
JR
,
El Youssef
J
,
Jacobs
PG
.
Prediction of hypoglycemia during aerobic exercise in adults with type 1 diabetes
.
J Diabetes Sci Technol
.
2019
;
13
(
5
):
919
27
.
39.
Kordonouri
O
,
Riddell
MC
.
Use of apps for physical activity in type 1 diabetes: current status and requirements for future development
.
Ther Adv Endocrinol Metab
.
2019
;
10
:
2042018819839298
.
40.
Jacobs
PG
,
Resalat
N
,
Hilts
W
,
Young
GM
,
Leitschuh
J
,
Pinsonault
J
, et al
.
Integrating metabolic expenditure information from wearable fitness sensors into an AI-augmented automated insulin delivery system: a randomised clinical trial
.
Lancet Digit Heal
.
2023
;
5
(
9
):
e607
17
.
41.
Cooke
D
,
Bond
R
,
Lawton
J
,
Rankin
D
,
Heller
S
,
Clark
M
, et al
.
Structured type 1 diabetes education delivered within routine care: impact on glycemic control and diabetes-specific quality of life
.
Diabetes Care
.
2013
;
36
(
2
):
270
2
.
42.
Alloatti
F
,
Bosca
A
,
Di Caro
L
,
Pieraccini
F
.
Diabetes and conversational agents: the AIDA project case study
.
Discov Artif Intell
.
2021
;
1
(
1
):
4
.
43.
Nassar
CM
,
Dunlea
R
,
Montero
A
,
Tweedt
A
,
Magee
MF
.
Feasibility and preliminary behavioral and clinical efficacy of a diabetes education chatbot pilot among adults with type 2 diabetes
.
J Diabetes Sci Technol
.
2025
;
19
(
1
):
54
62
.
44.
Nakhleh
A
,
Spitzer
S
,
Shehadeh
N
.
ChatGPT’s response to the diabetes knowledge questionnaire: implications for diabetes education
.
Diabetes Technol Ther
.
2023
;
25
(
8
):
571
3
.
45.
Hamed
E
,
Eid
A
,
Alberry
M
.
Exploring ChatGPT’s potential in facilitating adaptation of clinical guidelines: a case study of diabetic ketoacidosis guidelines
.
Cureus
.
2023
;
15
(
5
):
e38784
.
46.
Sng
GGR
,
Tung
JYM
,
Lim
DYZ
,
Bee
YM
.
Potential and pitfalls of ChatGPT and natural-language artificial intelligence models for diabetes education
.
Diabetes Care
.
2023
;
46
(
5
):
e103
5
.
47.
Sagstad
MH
,
Morken
N-H
,
Lund
A
,
Dingsør
LJ
,
Nilsen
ABV
,
Sorbye
LM
.
Quantitative user data from a chatbot developed for women with gestational diabetes mellitus: observational study
.
JMIR Form Res
.
2022
;
6
(
4
):
e28091
.
48.
Sharma
S
,
Pajai
S
,
Prasad
R
,
Wanjari
MB
,
Munjewar
PK
,
Sharma
R
, et al
.
A critical review of ChatGPT as a potential substitute for diabetes educators
.
Cureus
.
2023
;
15
(
5
):
e38380
.
49.
Nimri
R
,
Dassau
E
,
Segall
T
,
Muller
I
,
Bratina
N
,
Kordonouri
O
, et al
.
Adjusting insulin doses in patients with type 1 diabetes who use insulin pump and continuous glucose monitoring: variations among countries and physicians
.
Diabetes Obes Metab
.
2018
;
20
(
10
):
2458
66
.
50.
Nimri
R
,
Oron
T
,
Muller
I
,
Kraljevic
I
,
Alonso
MM
,
Keskinen
P
, et al
.
Adjustment of insulin pump settings in type 1 diabetes management: advisor Pro device compared to physicians’ recommendations
.
J Diabetes Sci Technol
.
2022
;
16
(
2
):
364
72
.
51.
Nimri
R
,
Tirosh
A
,
Muller
I
,
Shtrit
Y
,
Kraljevic
I
,
Alonso
MM
, et al
.
Comparison of insulin dose adjustments made by artificial intelligence-based decision support systems and by physicians in people with type 1 diabetes using multiple daily injections therapy
.
Diabetes Technol Ther
.
2022
;
24
(
8
):
564
72
.
52.
Nimri
R
,
Battelino
T
,
Laffel
LM
,
Slover
RH
,
Schatz
D
,
Weinzimer
SA
, et al
.
Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes
.
Nat Med
.
2020
;
26
(
9
):
1380
4
.
53.
Bergenstal
RM
,
Johnson
M
,
Passi
R
,
Bhargava
A
,
Young
N
,
Kruger
DF
, et al
.
Automated insulin dosing guidance to optimise insulin management in patients with type 2 diabetes: a multicentre, randomised controlled trial
.
Lancet
.
2019
;
393
(
10176
):
1138
48
.
54.
Harper
R
,
Bashan
E
,
Williams
KJ
,
Sritharan
S
,
Willis
M
,
Marriott
DJ
, et al
.
Challenging the 50-50 rule for the basal-bolus insulin ratio in patients with type 2 diabetes who maintain stable glycaemic control
.
Diabetes Obes Metab
.
2023
;
25
(
2
):
581
5
.
55.
Hermanns
N
,
Ehrmann
D
,
Finke-Groene
K
,
Krichbaum
M
,
Roos
T
,
Haak
T
, et al
.
Use of smartphone application versus written titration charts for basal insulin titration in adults with type 2 diabetes and suboptimal glycaemic control (My Dose Coach): multicentre, open-label, parallel, randomised controlled trial
.
Lancet Reg Health Eur
.
2023
;
33
:
100702
.
56.
Nevoret
C
,
Gervaise
N
,
Delemer
B
,
Bekka
S
,
Detournay
B
,
Benkhelil
A
, et al
.
The effectiveness of an app (insulia) in recommending basal insulin doses for French patients with type 2 diabetes mellitus: longitudinal observational study
.
JMIR Diabetes
.
2023
;
8
:
e44277
.
57.
Bisio
A
,
Anderson
S
,
Norlander
L
,
O'Malley
G
,
Robic
J
,
Ogyaadu
S
, et al
.
Impact of a novel diabetes support system on a cohort of individuals with type 1 diabetes treated with multiple daily injections: a multicenter randomized study
.
Diabetes Care
.
2022
;
45
(
1
):
186
93
.
58.
Castle
JR
,
Wilson
LM
,
Tyler
NS
,
Espinoza
AZ
,
Mosquera-Lopez
CM
,
Kushner
T
, et al
.
Assessment of a decision support system for adults with type 1 diabetes on multiple daily insulin injections
.
Diabetes Technol The
.
2022
;
24
(
12
):
892
7
.
59.
Huang
Y
,
Cheung
CY
,
Li
D
,
Tham
YC
,
Sheng
B
,
Cheng
CY
, et al
.
AI-integrated ocular imaging for predicting cardiovascular disease: advancements and future outlook
.
Eye
.
2024
;
38
(
3
):
464
72
.
60.
Rajesh
AE
,
Davidson
OQ
,
Lee
CS
,
Lee
AY
.
Artificial intelligence and diabetic retinopathy: AI framework, prospective studies, head-to-head validation, and cost-effectiveness
.
Diabetes Care
.
2023
;
46
(
10
):
1728
39
.
61.
Wolf
RM
,
Liu
TYA
,
Thomas
C
,
Prichett
L
,
Zimmer-Galler
I
,
Smith
K
, et al
.
The SEE study: safety, efficacy, and equity of implementing autonomous artificial intelligence for diagnosing diabetic retinopathy in youth
.
Diabetes Care
.
2021
;
44
(
3
):
781
7
.
62.
Wolf
RM
,
Channa
R
,
Liu
TYA
,
Zehra
A
,
Bromberger
L
,
Patel
D
, et al
.
Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: the ACCESS randomized control trial
.
Nat Commun
.
2024
;
15
(
1
):
421
.
63.
American Diabetes Association Professional Practice Committee
,
ElSayed
NA
,
Aleppo
G
.
12. Retinopathy, neuropathy, and foot care: standards of care in diabetes-2024
.
Diabetes Care
.
2024
;
47
(
Suppl 1
):
S231
43
.
64.
Styles
CJ
.
Introducing automated diabetic retinopathy systems: it’s not just about sensitivity and specificity
.
Eye
.
2019
;
33
(
9
):
1357
8
.
65.
Zhong
Z
,
Yang
W
,
Zhu
C
,
Wang
Z
.
Role and progress of artificial intelligence in radiodiagnosing vascular calcification: a narrative review
.
Ann Transl Med
.
2023
;
11
(
2
):
131
0
.
66.
Zhao
D
,
Wang
W
,
Tang
T
,
Zhang
Y-Y
,
Yu
C
.
Current progress in artificial intelligence-assisted medical image analysis for chronic kidney disease: a literature review
.
Comput Struct Biotechnol J
.
2023
;
21
:
3315
26
.
67.
Anisuzzaman
DM
,
Wang
C
,
Rostami
B
,
Gopalakrishnan
S
,
Niezgoda
J
,
Yu
Z
.
Image-based artificial intelligence in wound assessment: a systematic review
.
Adv Wound Care
.
2022
;
11
(
12
):
687
709
.
68.
Yap
MH
,
Chatwin
KE
,
Ng
C-C
,
Abbott
CA
,
Bowling
FL
,
Rajbhandari
S
, et al
.
A new mobile application for standardizing diabetic foot images
.
J Diabetes Sci Technol
.
2018
;
12
(
1
):
169
73
.
69.
Schaarup
JFR
,
Aggarwal
R
,
Dalsgaard
E-M
,
Norman
K
,
Dollerup
OL
,
Ashrafian
H
, et al
.
Perception of artificial intelligence-based solutions in healthcare among people with and without diabetes: a cross-sectional survey from the health in Central Denmark cohort
.
Diabetes Epidemiol Management
.
2023
;
9
:
100114
.
70.
Laï
M-C
,
Brian
M
,
Mamzer
M-F
.
Perceptions of artificial intelligence in healthcare: findings from a qualitative survey study among actors in France
.
J Transl Med
.
2020
;
18
(
1
):
14
.
71.
Tucci
V
,
Saary
J
,
Doyle
TE
.
Factors influencing trust in medical artificial intelligence for healthcare professionals: a narrative review
.
J Med Artif Intell
.
2022
;
5
(
4
):
4
.
You do not currently have access to this content.