Introduction: Patients with classical congenital adrenal hyperplasia (CAH) exhibit an increased prevalence of obesity from childhood including central adiposity and inflammation. There is also an emerging affected brain phenotype in CAH, with decreased cortico-limbic gray matter volumes and white matter abnormalities. We aimed to study the relationship between brain structure, obesity, and inflammation in children and adolescents with CAH compared to controls. Methods: 27 CAH (12.6 ± 3.4 y, 16 females) and 35 control (13.0 ± 2.8 y, 20 females) participants had MRI of gray matter regions of interest (prefrontal cortex [PFC], amygdala, hippocampus) and white matter microstructure (fornix, stria terminalis [ST]). Anthropometric measures and lab analytes were obtained. Relaimpo analyses (relative importance for linear regression; percent variance) identified which brain structures were most different between groups. Subsequent regressions further quantified the magnitude and direction of these relationships. Correlations analyzed relationships between brain structure, obesity, and inflammation in the context of CAH status. Results: PFC (13.3% variance) and its superior frontal (SF) subregion (14%) were most different between CAH and controls for gray matter; ST (16%) for white matter. Patients with CAH had lower caudal middle frontal (β = −0.56 [−0.96, −0.15]) and superior frontal (β = −0.58 [−0.92, −0.25]) subregion volumes, increased orientation dispersion index in the fornix (β = 0.56 [0.01, 1.10]) and ST (β = 0.85 [0.34, 1.36]), and decreased fractional anisotropy in the fornix (β = −0.91 [−1.42, −0.42]) and ST (β = −0.83 [−1.34, −0.33]) (all p’s < 0.05) indicating axonal disorganization, reduced myelin content, and/or higher microglial density within the affected white matter tracts. For the full cohort, SF was correlated with MCP-1 (r = −0.41), visceral adipose tissue (r = −0.25), and waist-to-height ratio (r = −0.27, all p’s < 0.05); ST was correlated with MCP-1 (r = 0.31) and TNF-α (r = 0.29, all p’s < 0.05); however, after adjusting for CAH status, almost all correlations were attenuated for significance. Conclusions: Relationships among key brain structures, body composition, and inflammatory markers in pediatric patients with CAH could be largely driven by having CAH, with implications for obesity and neuroinflammation in this high-risk population.

1.
Goto
M
,
Piper Hanley
K
,
Marcos
J
,
Wood
PJ
,
Wright
S
,
Postle
AD
, et al
.
In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development
.
J Clin Invest
.
2006
;
116
(
4
):
953
60
. .In
2.
White
PC
.
Ontogeny of adrenal steroid biosynthesis: why girls will be girls
.
J Clin Invest
.
2006
;
116
(
4
):
872
4
. .
3.
Mooij
CF
,
Kroese
JM
,
Claahsen-van der Grinten
HL
,
Tack
CJ
,
Hermus
AR
.
Unfavourable trends in cardiovascular and metabolic risk in paediatric and adult patients with congenital adrenal hyperplasia
.
Clin Endocrinol
.
2010
;
73
(
2
):
137
46
. .
4.
Finkielstain
GP
,
Kim
MS
,
Sinaii
N
,
Nishitani
M
,
Van Ryzin
C
,
Hill
SC
, et al
.
Clinical characteristics of a cohort of 244 patients with congenital adrenal hyperplasia
.
J Clin Endocrinol Metab
.
2012
;
97
(
12
):
4429
38
. .
5.
Bhullar
G
,
Tanawattanacharoen
VK
,
Yeh
MY
,
Kim
WS
,
Vidmar
AP
,
Geffner
ME
, et al
.
Early adiposity rebound predicts obesity and adiposity in youth with congenital adrenal hyperplasia
.
Horm Res Paediatr
.
2020
;
93
(
11–12
):
609
15
. .
6.
Torky
A
,
Sinaii
N
,
Jha
S
,
Desai
J
,
El-Maouche
D
,
Mallappa
A
, et al
.
Cardiovascular disease risk factors and metabolic morbidity in a longitudinal study of congenital adrenal hyperplasia
.
J Clin Endocrinol Metab
.
2021
;
106
(
12
):
e5247
57
. .
7.
Kim
MS
,
Ryabets-Lienhard
A
,
Dao-Tran
A
,
Mittelman
SD
,
Gilsanz
V
,
Schrager
SM
, et al
.
Increased abdominal adiposity in adolescents and young adults with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency
.
J Clin Endocrinol Metab
.
2015
;
100
(
8
):
E1153
9
. .
8.
Marra
AM
,
Improda
N
,
Capalbo
D
,
Salzano
A
,
Arcopinto
M
,
De Paulis
A
, et al
.
Cardiovascular abnormalities and impaired exercise performance in adolescents with congenital adrenal hyperplasia
.
J Clin Endocrinol Metab
.
2015
;
100
(
2
):
644
52
. .
9.
Kim
MS
,
Fraga
NR
,
Minaeian
N
,
Geffner
ME
.
Components of metabolic syndrome in youth with classical congenital adrenal hyperplasia
.
Front Endocrinol
.
2022
;
13
:
848274
. .
10.
Herting
MM
,
Azad
A
,
Kim
R
,
Tyszka
JM
,
Geffner
ME
,
Kim
MS
.
Brain differences in the prefrontal cortex, amygdala, and Hippocampus in youth with congenital adrenal hyperplasia
.
J Clin Endocrinol Metab
.
2020
;
105
(
4
):
1098
111
. .
11.
Van’t Westeinde
A
,
Karlsson
L
,
Thomsen Sandberg
M
,
Nordenström
A
,
Padilla
N
,
Lajic
S
.
Altered gray matter structure and white matter microstructure in patients with congenital adrenal hyperplasia: relevance for working memory performance
.
Cereb Cortex
.
2020
;
30
(
5
):
2777
88
. .
12.
Webb
EA
,
Elliott
L
,
Carlin
D
,
Wilson
M
,
Hall
K
,
Netherton
J
, et al
.
Quantitative brain MRI in congenital adrenal hyperplasia: in vivo assessment of the cognitive and structural impact of steroid hormones
.
J Clin Endocrinol Metab
.
2018
;
103
(
4
):
1330
41
. .
13.
Merke
DP
,
Fields
JD
,
Keil
MF
,
Vaituzis
AC
,
Chrousos
GP
,
Giedd
JN
.
Children with classic congenital adrenal hyperplasia have decreased amygdala volume: potential prenatal and postnatal hormonal effects
.
J Clin Endocrinol Metab
.
2003
;
88
(
4
):
1760
5
. .
14.
Cotter
DL
,
Azad
A
,
Cabeen
RP
,
Kim
MS
,
Geffner
ME
,
Sepehrband
F
, et al
.
White matter microstructural differences in youth with classical congenital adrenal hyperplasia
.
J Clin Endocrinol Metab
.
2021
;
106
(
11
):
3196
212
. .
15.
Rajagopalan
V
,
Overholtzer
LN
,
Kim
WS
,
Wisnowski
JL
,
Miller
DA
,
Geffner
ME
, et al
.
A case of prenatally diagnosed congenital adrenal hyperplasia with brain morphometric differences
.
J Investig Med High Impact Case Rep
.
2022
;
10
:
23247096221105245
. .
16.
Rajagopalan
V
,
Overholtzer
LN
,
Kim
WS
,
Wisnowski
JL
,
Pickering
TA
,
Fraga
NR
, et al
.
Infants with congenital adrenal hyperplasia exhibit thalamic discrepancies in early brain structure
.
Horm Res Paediatr
.
2023
;
96
(
5
):
509
17
. .
17.
VolkowWang
NDGJ
,
Baler
RD
,
Baler RD
.
Reward, dopamine and the control of food intake: implications for obesity
.
Trends Cogn Sci
.
2011
;
15
(
1
):
37
46
. .
18.
Lowe
CJ
,
Reichelt
AC
,
Hall
PA
.
The prefrontal cortex and obesity: a Health neuroscience perspective
.
Trends Cogn Sci
.
2019
;
23
(
4
):
349
61
. .
19.
Kim
MS
,
Luo
S
,
Azad
A
,
Campbell
CE
,
Felix
K
,
Cabeen
RP
, et al
.
Prefrontal cortex and amygdala subregion morphology are associated with obesity and dietary self-control in children and adolescents
.
Front Hum Neurosci
.
2020
;
14
:
563415
. .
20.
Dekkers
IA
,
Jansen
PR
,
Lamb
HJ
.
Obesity, brain volume, and white matter microstructure at MRI: a cross-sectional UK biobank study
.
Radiology
.
2019
;
291
(
3
):
763
71
. .
21.
Li
ZA
,
Samara
A
,
Ray
MK
,
Rutlin
J
,
Raji
CA
,
Shimony
JS
, et al
.
Childhood obesity is linked to putative neuroinflammation in brain white matter, hypothalamus, and striatum
.
Cereb Cortex Commun
.
2023
;
4
(
2
):
tgad007
. .
22.
Nouwen
A
,
Chambers
A
,
Chechlacz
M
,
Higgs
S
,
Blissett
J
,
Barrett
TG
, et al
.
Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes
.
Neuroimage Clin
.
2017
;
16
:
43
51
. .
23.
Guillemot-Legris
O
,
Muccioli
GG
.
Obesity-induced neuroinflammation: beyond the hypothalamus
.
Trends Neurosci
.
2017
;
40
(
4
):
237
53
. .
24.
Samara
A
,
Murphy
T
,
Strain
J
,
Rutlin
J
,
Sun
P
,
Neyman
O
, et al
.
Neuroinflammation and white matter alterations in obesity assessed by diffusion basis spectrum imaging
.
Front Hum Neurosci
.
2019
;
13
:
464
. .
25.
Virdis
A
,
Colucci
R
,
Bernardini
N
,
Blandizzi
C
,
Taddei
S
,
Masi
S
.
Microvascular endothelial dysfunction in human obesity: role of TNF-α
.
J Clin Endocrinol Metab
.
2019
;
104
(
2
):
341
8
. .
26.
Marshall
WA
,
Tanner
JM
.
Growth and physiological development during adolescence
.
Annu Rev Med
.
1968
;
19
:
283
300
. .
27.
Prevention CDC
.
Division of nutrition, physical activity, and obesity
;
National Center for Chronic Disease Prevention & Health Promotion. About Child & Teen BMI
.
2020
[updated June 29, 2020. Available from: https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html.
28.
Mei
J
,
Williams
I
.
Centers for disease control and prevention. Newborn screening quality assurance program
;
2017
. second-tier congenital adrenal hyperplasia proficiency testing program (CAHPT) quarterly report. https://www.cdc.gov/labstandards/pdf/nsqap/nsqap_CAHFeb2017.pdf.
29.
Fischl
B
,
Salat
DH
,
Busa
E
,
Albert
M
,
Dieterich
M
,
Haselgrove
C
, et al
.
Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
.
Neuron
.
2002
;
33
(
3
):
341
55
. .
30.
Reuter
M
,
Schmansky
NJ
,
Rosas
HD
,
Fischl
B
.
Within-subject template estimation for unbiased longitudinal image analysis
.
Neuroimage
.
2012
;
61
(
4
):
1402
18
. .
31.
Edwards
LJ
,
Pine
KJ
,
Ellerbrock
I
,
Weiskopf
N
,
Mohammadi
S
.
NODDI-DTI: estimating neurite orientation and dispersion parameters from a diffusion tensor in healthy white matter
.
Front Neurosci
.
2017
;
11
:
720
. .
32.
Zhang
H
,
Schneider
T
,
Wheeler-Kingshott
CA
,
Alexander
DC
.
NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
.
Neuroimage
.
2012
;
61
(
4
):
1000
16
. .
33.
Timmers
I
,
Roebroeck
A
,
Bastiani
M
,
Jansma
B
,
Rubio-Gozalbo
E
,
Zhang
H
.
Assessing microstructural substrates of white matter abnormalities: a comparative study using DTI and NODDI
.
PLoS One
.
2016
;
11
(
12
):
e0167884
. .
34.
Team
RC
.
A language and environment for statistical computing
.
Vienna, Austria
:
R Foundation for Statistical Computing
;
2021
.
35.
Grömping
U
.
Relative importance for linear regression in R: the package relaimpo
.
J Stat Softw
.
2006
;
17
(
1
):
1
27
. .
36.
Hare
TA
,
Camerer
CF
,
Rangel
A
.
Self-control in decision-making involves modulation of the vmPFC valuation system
.
Science
.
2009
;
324
(
5927
):
646
8
. .
37.
Schmidt
L
,
Tusche
A
,
Manoharan
N
,
Hutcherson
C
,
Hare
T
,
Plassmann
H
.
Neuroanatomy of the vmPFC and dlPFC predicts individual differences in cognitive regulation during dietary self-control across regulation strategies
.
J Neurosci
.
2018
;
38
(
25
):
5799
806
. .
38.
Lampe
L
,
Zhang
R
,
Beyer
F
,
Huhn
S
,
Kharabian Masouleh
S
,
Preusser
S
, et al
.
Visceral obesity relates to deep white matter hyperintensities via inflammation
.
Ann Neurol
.
2019
;
85
(
2
):
194
203
. .
39.
Panee
J
.
Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes
.
Cytokine
.
2012
;
60
(
1
):
1
12
. .
40.
Huber
J
,
Kiefer
FW
,
Zeyda
M
,
Ludvik
B
,
Silberhumer
GR
,
Prager
G
, et al
.
CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity
.
J Clin Endocrinol Metab
.
2008
;
93
(
8
):
3215
21
. .
41.
Kullmann
S
,
Abbas
Z
,
Machann
J
,
Shah
NJ
,
Scheffler
K
,
Birkenfeld
AL
, et al
.
Investigating obesity-associated brain inflammation using quantitative water content mapping
.
J Neuroendocrinol
.
2020
;
32
(
12
):
e12907
. .
42.
Bouhrara
M
,
Khattar
N
,
Elango
P
,
Resnick
SM
,
Ferrucci
L
,
Spencer
RG
.
Evidence of association between obesity and lower cerebral myelin content in cognitively unimpaired adults
.
Int J Obes
.
2021
;
45
(
4
):
850
9
. .
43.
Higgs
S
,
Spetter
MS
.
Cognitive control of eating: the role of memory in appetite and weight gain
.
Curr Obes Rep
.
2018
;
7
(
1
):
50
9
. .
44.
Senova
S
,
Fomenko
A
,
Gondard
E
,
Lozano
AM
.
Anatomy and function of the fornix in the context of its potential as a therapeutic target
.
J Neurol Neurosurg Psychiatry
.
2020
;
91
(
5
):
547
59
. .
45.
Amr
NH
,
Baioumi
AY
,
Serour
MN
,
Khalifa
A
,
Shaker
NM
.
Cognitive functions in children with congenital adrenal hyperplasia
.
Arch Endocrinol Metab
.
2019
;
63
(
2
):
113
20
. .
46.
Hamed
SA
,
Metwalley
KA
,
Farghaly
HS
.
Cognitive function in children with classic congenital adrenal hyperplasia
.
Eur J Pediatr
.
2018
;
177
(
11
):
1633
40
. .
47.
Browne
WV
,
Hindmarsh
PC
,
Pasterski
V
,
Hughes
IA
,
Acerini
CL
,
Spencer
D
, et al
.
Working memory performance is reduced in children with congenital adrenal hyperplasia
.
Horm Behav
.
2015
;
67
:
83
8
. .
You do not currently have access to this content.