In children, proper growth and development are often regarded as a surrogate marker for good health. A complex system controls the initiation, rate, and cessation of growth, and thus gives a wonderful example of the interactions between genetics, epigenetics, and environmental factors (especially stress and nutrition). Malnutrition is considered a leading cause of growth attenuation in children. This review summarizes our current knowledge regarding the mechanisms linking nutrition and skeletal growth, including systemic factors, such as insulin, growth hormone, insulin-like growth factor-1, fibroblast growth factor-21, etc., and local mechanisms, including mTOR, miRNAs, and epigenetics. Studying the molecular mechanisms regulating skeletal growth may lead to the establishment of better nutritional and therapeutic regimens for more effective linear growth in children with malnutrition and growth abnormalities.

1.
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan J, Kutalik Z, et al: Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 2014;46: 1173–1186.
2.
Schonbeck Y, Talma H, van Dommelen P, Bakker B, Buitendijk SE, HiraSing RA, van Buuren S: The world’s tallest nation has stopped growing taller: the height of Dutch children from 1955 to 2009. Pediatr Res 2013;73: 371–377.
3.
Kar BR, Rao SL, Chandramouli BA: Cognitive development in children with chronic protein energy malnutrition. Behav Brain Funct 2008;4: 31.
4.
Norrmen C, Suter U: Akt/mTOR signalling in myelination. Biochem Soc Trans 2013;41: 944–950.
5.
Mackie EJ, Tatarczuch L, Mirams M: The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 2011;211: 109–121.
6.
Park J, Gebhardt M, Golovchenko S, Perez-Branguli F, Hattori T, Hartmann C, Zhou X, deCrombrugghe B, Stock M, Schneider H, et al: Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage. Biol Open 2015;4: 608–621.
7.
Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML: Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res 2010;25: 2078–2088.
8.
Pando R, Masarwi M, Shtaif B, Idelevich A, Monsonego-Ornan E, Shahar R, Phillip M, Gat-Yablonski G: Bone quality is affected by food restriction and by nutrition-induced catch-up growth. J Endocrinol 2014;223: 227–239.
9.
Masarwi M, Gabet Y, Dolkart O, Brosh T, Shamir R, Phillip M, Gat-Yablonski G: Skeletal effect of casein and whey protein intake during catch-up growth in young male Sprague-Dawley rats. Br J Nutr 2016;116: 59–69.
10.
Farnum CE, Lee AO, O’Hara K, Wilsman NJ: Effect of short-term fasting on bone elongation rates: an analysis of catch-up growth in young male rats. Pediatr Res 2003;53: 33–41.
11.
Even-Zohar N, Jacob J, Amariglio N, Rechavi G, Potievsky O, Phillip M, Gat-Yablonski G: Nutrition-induced catch-up growth increases hypoxia inducible factor 1alpha RNA levels in the growth plate. Bone 2008;42: 505–515.
12.
Rouy E, Vico L, Laroche N, Benoit V, Rousseau B, Blachier F, Tome D, Blais A: Protein quality affects bone status during moderate protein restriction in growing mice. Bone 2014;59: 7–13.
13.
Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG: Central nervous system control of food intake. Nature 2000;404: 661–671.
14.
Baumeister FA, Engelsberger I, Schulze A: Pancreatic agenesis as cause for neonatal diabetes mellitus. Klin Padiatr 2005;217: 76–81.
15.
Taylor SI: Lilly Lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes 1992;41: 1473–1490.
16.
Krook A, O’Rahilly S: Mutant insulin receptors in syndromes of insulin resistance. Baillieres Clin Endocrinol Metab 1996;10: 97–122.
17.
Vignolo M, Naselli A, Di Battista E, Mostert M, Aicardi G: Growth and development in simple obesity. Eur J Pediatr 1988;147: 242–244.
18.
Epstein LH, McCurley J, Valoski A, Wing RR: Growth in obese children treated for obesity. Am J Dis Child 1990;144: 1360–1364.
19.
He Q, Karlberg J: Bmi in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res 2001;49: 244–251.
20.
Klein KO, Larmore KA, de Lancey E, Brown JM, Considine RV, Hassink SG: Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J Clin Endocrinol Metab 1998;83: 3469–3475.
21.
Shalitin S, Phillip M: Role of obesity and leptin in the pubertal process and pubertal growth – a review. Int J Obes Relat Metab Disord 2003;27: 869–874.
22.
Gat-Yablonski G, Phillip M: Leptin and regulation of linear growth. Curr Opin Clin Nutr Metab Care 2008;11: 303–308.
23.
Bucher H, Zapf J, Torresani T, Prader A, Froesch ER, Illig R: Insulin-like growth factors I and II, prolactin, and insulin in 19 growth hormone-deficient children with excessive, normal, or decreased longitudinal growth after operation for craniopharyngioma. N Engl J Med 1983;309: 1142–1146.
24.
De Simone M, Farello G, Palumbo M, Gentile T, Ciuffreda M, Olioso P, Cinque M, De Matteis F: Growth charts, growth velocity and bone development in childhood obesity. Int J Obes Relat Metab Disord 1995;19: 851–857.
25.
Copeland KC, Colletti RB, Devlin JT, McAuliffe TL: The relationship between insulin-like growth factor-I, adiposity, and aging. Metabolism 1990;39: 584–587.
26.
Gama R, Teale JD, Marks V: The effect of synthetic very low calorie diets on the GH-IGF-1 axis in obese subjects. Clin Chim Acta 1990;188: 31–38.
27.
Radetti G, Bozzola M, Pasquino B, Paganini C, Aglialoro A, Livieri C, Barreca A: Growth hormone bioactivity, insulin-like growth factors (IGFs), and IGF binding proteins in obese children. Metabolism 1998;47: 1490–1493.
28.
Saitoh H, Kamoda T, Nakahara S, Hirano T, Nakamura N: Serum concentrations of insulin, insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-1 and -3 and growth hormone binding protein in obese children: fasting IGFBP-1 is suppressed in normoinsulinaemic obese children. Clin Endocrinol (Oxf) 1998;48: 487–492.
29.
Ong KK, Petry CJ, Emmett PM, Sandhu MS, Kiess W, Hales CN, Ness AR, Dunger DB; ALSPAC study team: Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and plasma insulin-like growth factor-I levels. Diabetologia 2004;47: 1064–1070.
30.
Heinze E, Vetter U, Voigt KH: Insulin stimulates skeletal growth in vivo and in vitro – comparison with growth hormone in rats. Diabetologia 1989;32: 198–202.
31.
Baxter RC, Bryson JM, Turtle JR: Somatogenic receptors of rat liver: regulation by insulin. Endocrinology 1980;107: 1176–1181.
32.
Johnson TR, Blossey BK, Denko CW, Ilan J: Expression of insulin-like growth factor I in cultured rat hepatocytes: effects of insulin and growth hormone. Mol Endocrinol 1989;3: 580–587.
33.
Salter J, Best CH: Insulin as a growth hormone. Br Med J 1953;2: 353–356.
34.
Hill DJ, de Sousa D: Insulin is a mitogen for isolated epiphyseal growth plate chondrocytes from the fetal lamb. Endocrinology 1990;126: 2661–2670.
35.
Maor G, Silbermann M, von der Mark K, Heingard D, Laron Z: Insulin enhances the growth of cartilage in organ and tissue cultures of mouse neonatal mandibular condyle. Calcif Tissue Int 1993;52: 291–299.
36.
Torres ES, Andrade CV, Fonseca EC, Mello MA, Duarte ME: Insulin impairs the maturation of chondrocytes in vitro. Braz J Med Biol Res 2003;36: 1185–1192.
37.
Phornphutkul C, Wu KY, Gruppuso PA: The role of insulin in chondrogenesis. Mol Cell Endocrinol 2006;249: 107–115.
38.
Wu S, Aguilar AL, Ostrow V, De Luca F: Insulin resistance secondary to a high-fat diet stimulates longitudinal bone growth and growth plate chondrogenesis in mice. Endocrinology 2011;152: 468–475.
39.
Wu S, Yang W, De Luca F: Insulin-like growth factor-independent effects of growth hormone on growth plate chondrogenesis and longitudinal bone growth. Endocrinology 2015;156: 2541–2551.
40.
Baker J, Liu JP, Robertson EJ, Efstratiadis A: Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75: 73–82.
41.
Hunziker EB, Wagner J, Zapf J: Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J Clin Invest 1994;93: 1078–1086.
42.
Cruickshank J, Grossman DI, Peng RK, Fa-mula TR, Oberbauer AM: Spatial distribution of growth hormone receptor, insulin-like growth factor-I receptor and apoptotic chondrocytes during growth plate development. J Endocrinol 2005;184: 543–553.
43.
Wu S, Flint JK, Rezvani G, De Luca F: Nuclear factor-kappaB p65 facilitates longitudinal bone growth by inducing growth plate chondrocyte proliferation and differentiation and by preventing apoptosis. J Biol Chem 2007;282: 33698–33706.
44.
Wu S, Morrison A, Sun H, De Luca F: Nuclear factor-kappaB (NF-kappaB) p65 interacts with Stat5b in growth plate chondrocytes and mediates the effects of growth hormone on chondrogenesis and on the expression of insulin-like growth factor-1 and bone morphogenetic protein-2. J Biol Chem 2011;286: 24726–24734.
45.
Mosier HD Jr, Jansons RA: Growth hormone during catch-up growth and failure of catch-up growth in rats. Endocrinology 1976;98: 214–219.
46.
Hermanussen M, Rol de Lama MA, Romero AP, Ruiz CA, Burmeister J, Tresguerres JA: Differential catch-up in body weight and bone growth after short-term starvation in rats. Growth regulation 1996;6: 230–237.
47.
Pando R, Shtaif B, Phillip M, Gat-Yablonski G: A serum component mediates food restriction-induced growth attenuation. Endocrinology 2014;155: 932–940.
48.
Pando R, Even-Zohar N, Shtaif B, Edry L, Shomron N, Phillip M, Gat-Yablonski G: MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1. J Nutr Biochem 2012;23: 1474–1481.
49.
Maes M, Ketelslegers JM, Underwood LE: Low circulating somatomedin-C/insulin-like growth factor I in insulin-dependent diabetes and malnutrition: growth hormone receptor and post-receptor defects. Acta Endocrinol Suppl (Copenh) 1986;279: 86–92.
50.
Crowe FL, Key TJ, Allen NE, Appleby PN, Roddam A, Overvad K, Gronbaek H, Tjonneland A, Halkjaer J, Dossus L, et al: The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 2009;18: 1333–1340.
51.
Cotterill AM, Holly JM, Wass JA: The regulation of insulin-like growth factor binding protein (IGFBP)-1 during prolonged fasting. Clin Endocrinol (Oxf) 1993;39: 357–362.
52.
Woodall SM, Breier BH, Johnston BM, Gluckman PD: A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J Endocrinol 1996;150: 231–242.
53.
Gat-Yablonski G, Finka A, Pinto G, Quadroni M, Shtaif B, Goloubinoff P: Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span. Aging (Albany NY) 2016;8: 1735–1758.
54.
Takenaka A, Komori K, Morishita T, Takahashi SI, Hidaka T, Noguchi T: Amino acid regulation of gene transcription of rat insulin-like growth factor-binding protein-1. J Endocrinol 2000;164:R11–R16.
55.
Lee PD, Suwanichkul A, DePaolis LA, Snuggs MB, Morris SL, Powell DR: Insulin-like growth factor (IGF) suppression of IGFBP-1 production: evidence for mediation by the type I IGF receptor. Regul Pept 1993;48: 199–206.
56.
Abu Shehab M, Iosef C, Wildgruber R, Sardana G, Gupta MB: Phosphorylation of IGFBP-1 at discrete sites elicits variable effects on IGF-I receptor autophosphorylation. Endocrinology 2013;154: 1130–1143.
57.
Pinto G, Shtaif B, Phillip M, Gat-Yablonski G: Growth attenuation is associated with histone deacetylase 10-induced autophagy in the liver. J Nutr Biochem 2016;27: 171–180.
58.
Lowe WL Jr, Adamo M, Werner H, Roberts CT Jr, LeRoith D: Regulation by fasting of rat insulin-like growth factor I and its receptor. Effects on gene expression and binding. J Clin Invest 1989;84: 619–626.
59.
Potthoff MJ, Kliewer SA, Mangelsdorf DJ: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012;26: 312–324.
60.
Yie J, Hecht R, Patel J, Stevens J, Wang W, Hawkins N, Steavenson S, Smith S, Winters D, Fisher S, et al: FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett 2009;583: 19–24.
61.
Wu S, Levenson A, Kharitonenkov A, De Luca F: Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 2012;287: 26060–26067.
62.
Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, et al: Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models – association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 2009;297:E1105–E1114.
63.
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, et al: Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007;5: 415–425.
64.
Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F: Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab 2009;94: 3594–3601.
65.
Galman C, Lundasen T, Kharitonenkov A, Bina HA, Eriksson M, Hafstrom I, Dahlin M, Amark P, Angelin B, Rudling M: The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008;8: 169–174.
66.
Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, et al: FGF21 is an endocrine signal of protein restriction. J Clin Invest 2014;124: 3913–3922.
67.
Donovan SM, Atilano LC, Hintz RL, Wilson DM, Rosenfeld RG: Differential regulation of the insulin-like growth factors (IGF-I and -II) and IGF binding proteins during malnutrition in the neonatal rat. Endocrinology 1991;129: 149–157.
68.
Pimstone B, Barbezat G, Hansen JD, Murray P: Growth hormone and protein-calorie malnutrition. Impaired suppression during induced hyperglycaemia. Lancet 1967;2: 1333–1334.
69.
Bucuvalas JC, Horn JA, Chernausek SD: Resistance to growth hormone in children with chronic liver disease. Pediatr Transplant 1997;1: 73–79.
70.
Hall K, Hilding A, Thoren M: Determinants of circulating insulin-like growth factor-I. J Endocrinol Invest 1999;22: 48–57.
71.
Pugliese MT, Lifshitz F, Grad G, Fort P, Marks-Katz M: Fear of obesity. A cause of short stature and delayed puberty. N Engl J Med 1983;309: 513–518.
72.
Hasan TF, Hasan H: Anorexia nervosa: a unified neurological perspective. Int J Med Sci 2011;8: 679–703.
73.
Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA: Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 2008;8: 77–83.
74.
Kubicky RA, Wu S, Kharitonenkov A, De Luca F: Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. Endocrinology 2012;153: 2287–2295.
75.
Touvier T, Conte-Auriol F, Briand O, Cudejko C, Paumelle R, Caron S, Bauge E, Rouille Y, Salles JP, Staels B, et al: LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. J Clin Invest 2009;119: 3830–3838.
76.
Wu S, Grunwald T, Kharitonenkov A, Dam J, Jockers R, De Luca F: Increased expression of fibroblast growth factor 21 (FGF21) during chronic undernutrition causes growth hormone insensitivity in chondrocytes by inducing leptin receptor overlapping transcript (LEPROT) and leptin receptor overlapping transcript-like 1 (LEPROTL1) expression. J Biol Chem 2013;288: 27375–27383.
77.
Fazeli PK, Misra M, Goldstein M, Miller KK, Klibanski A: Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa. J Clin Endocrinol Metab 2010;95: 369–374.
78.
Hero M, Dunkel L, Vaaralahti K, Raivio T: Serum FGF21 in boys with idiopathic short stature: relationship to lipid profile, onset of puberty and growth. Clin Endocrinol (Oxf) 2011;75: 141–142.
79.
Mericq V, De Luca F, Hernandez MI, Pena V, Rossel K, Garcia M, Avila A, Cavada G, Iniguez G: Serum fibroblast growth factor 21 levels are inversely associated with growth rates in infancy. Horm Res Paediatr 2014;82: 324–331.
80.
Guasti L, Silvennoinen S, Bulstrode NW, Ferretti P, Sankilampi U, Dunkel L: Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants through GH resistance in chondrocytes. J Clin Endocrinol Metab 2014;99:E2198–E2206.
81.
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372: 425–432.
82.
Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F: Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269: 540–543.
83.
Campfield LA: Metabolic and hormonal controls of food intake: highlights of the last 25 years – 1972–1997. Appetite 1997;29: 135–152.
84.
Cohen MM Jr: Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. Am J Med Genet A 2006;140: 515–524.
85.
Gat-Yablonski G, Ben-Ari T, Shtaif B, Potievsky O, Moran O, Eshet R, Maor G, Segev Y, Phillip M: Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology 2004;145: 343–350.
86.
Ben-Eliezer M, Phillip M, Gat-Yablonski G: Leptin regulates chondrogenic differentiation in ATDC5 cell-line through JAK/STAT and MAPK pathways. Endocrine 2007;32: 235–244.
87.
Karsenty G: Leptin controls bone formation through a hypothalamic relay. Recent Prog Horm Res 2001;56: 401–415.
88.
Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT: Peripheral leptin regulates bone formation. J Bone Miner Res 2013;28: 22–34.
89.
Grisaru-Granovsky S, Samueloff A, Elstein D: The role of leptin in fetal growth: a short review from conception to delivery. Eur J Obstet Gynecol Reprod Biol 2008;136: 146–150.
90.
Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG: Leptin is a potent stimulator of bone growth in ob/ob mice. Reg Pept 2000;92: 73–78.
91.
Iwaniec UT, Boghossian S, Lapke PD, Turner RT, Kalra SP: Central leptin gene therapy corrects skeletal abnormalities in leptin-deficient ob/ob mice. Peptides 2007;28: 1012–1019.
92.
Carro E, Senaris R, Considine RV, Casanueva FF, Dieguez C: Regulation of in vivo growth hormone secretion by leptin. Endocrinology 1997;138: 2203–2206.
93.
Jin L, Burguera BG, Couce ME, Scheithauer BW, Lamsan J, Eberhardt NL, Kulig E, Lloyd RV: Leptin and leptin receptor expression in normal and neoplastic human pituitary: evidence of a regulatory role for leptin on pituitary cell proliferation. J Clin Endocrinol Metab 1999;84: 2903–2911.
94.
Goldstone AP, Howard JK, Lord GM, Ghatei MA, Gardiner JV, Wang ZL, Wang RM, Girgis SI, Bailey CJ, Bloom SR: Leptin prevents the fall in plasma osteocalcin during starvation in male mice. Biochem Biophys Res Commun 2002;295: 475–481.
95.
Accorsi PA, Munno A, Gamberoni M, Viggiani R, De Ambrogi M, Tamanini C, Seren E: Role of leptin on growth hormone and prolactin secretion by bovine pituitary explants. J Dairy Sci 2007;90: 1683–1691.
96.
Maor G, Rochwerger M, Segev Y, Phillip M: Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res 2002;17: 1034–1043.
97.
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100: 197–207.
98.
Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM: Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res 2008;23: 870–878.
99.
Gat-Yablonski G, Shtaif B, Phillip M: Leptin stimulates parathyroid hormone related peptide expression in the endochondral growth plate. J Pediatr Endocrinol Metab 2007;20: 1215–1222.
100.
Martin A, David V, Malaval L, Lafage-Proust MH, Vico L, Thomas T: Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology 2007;148: 3419–3425.
101.
Bar-El Dadon S, Shahar R, Katalan V, Monsonego-Ornan E, Reifen R: Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study. Nutrition 2011;27: 973–977.
102.
LaPaglia N, Steiner J, Kirsteins L, Emanuele M, Emanuele N: Leptin alters the response of the growth hormone releasing factor-growth hormone-insulin-like growth factor-I axis to fasting. J Endocrinol 1998;159: 79–83.
103.
Underwood LE, Clemmons DR, Maes M, D’Ercole AJ, Ketelslegers JM: Regulation of somatomedin-C/insulin-like growth factor I by nutrients. Horm Res 1986;24: 166–176.
104.
Kume K, Satomura K, Nishisho S, Kitaoka E, Yamanouchi K, Tobiume S, Nagayama M: Potential role of leptin in endochondral ossification. J Histochem Cytochem 2002;50: 159–169.
105.
Nakajima R, Inada H, Koike T, Yamano T: Effects of leptin to cultured growth plate chondrocytes. Horm Res 2003;60: 91–98.
106.
Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM: BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 2006;133: 4667–4678.
107.
Asahina I, Sampath TK, Hauschka PV: Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 1996;222: 38–47.
108.
Buxton P, Edwards C, Archer CW, Francis-West P: Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg Am 2001;83-A(suppl 1):S23–S30.
109.
Erlacher L, McCartney J, Piek E, ten Dijke P, Yanagishita M, Oppermann H, Luyten FP: Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis. J Bone Miner Res 1998;13: 383–392.
110.
Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S, et al: A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 2007;39: 529–533.
111.
van der Valk RJ, Kreiner-Moller E, Kooijman MN, Guxens M, Stergiakouli E, Saaf A, Bradfield JP, Geller F, Hayes MG, Cousminer DL, et al: A novel common variant in DCST2 is associated with length in early life and height in adulthood. Hum Mol Genet 2015;24: 1155–1168.
112.
Shtaif B, Dror N, Bar-Maisels M, Phillip M, Gat-Yablonski G: Growth without growth hormone: can growth and differentiation factor 5 be the mediator? Growth Factors 2015;33: 309–318.
113.
Pei Z, Yang Y, Kiess W, Sun C, Luo F: Dynamic profile and adipogenic role of growth differentiation factor 5 (GDF5) in the differentiation of 3T3-L1 preadipocytes. Arch Biochem Biophys 2014;560: 27–35.
114.
Hinoi E, Iezaki T, Ozaki K, Yoneda Y: Nuclear factor-kappaB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate. Biochem Biophys Res Commun 2014;452: 974–979.
115.
Zhang Y, Jia J, Yang S, Liu X, Ye S, Tian H: MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med 2014;46:e79.
116.
Knoll M, Lodish HF, Sun L: Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol 2015;11: 151–160.
117.
Song J, Ahn C, Chun CH, Jin EJ: A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res 2014;32: 1628–1635.
118.
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116: 281–297.
119.
Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ: Dicer is essential for mouse development. Nat Genet 2003;35: 215–217.
120.
Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM: Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 2008;105: 1949–1954.
121.
Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ: The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 2005;102: 10898–10903.
122.
Lin Z, Rodriguez NE, Zhao J, Ramey AN, Hyzy SL, Boyan BD, Schwartz Z: Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone 2016;88: 47–55.
123.
Wienholds E, Plasterk RH: MicroRNA function in animal development. FEBS Lett 2005;579: 5911–5922.
124.
Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T: The cartilage specific micro-RNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 2006;580: 4214–4217.
125.
Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 2010;24: 1173–1185.
126.
Zhang X, Chang A, Li Y, Gao Y, Wang H, Ma Z, Li X, Wang B: miR-140–5p regulates adipocyte differentiation by targeting transforming growth factor-beta signaling. Sci Rep 2015;5: 18118.
127.
Eberhart JK, He X, Swartz ME, Yan YL, Song H, Boling TC, Kunerth AK, Walker MB, Kimmel CB, Postlethwait JH: MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 2008;40: 290–298.
128.
Nicolas FE, Pais H, Schwach F, Lindow M, Kauppinen S, Moulton V, Dalmay T: mRNA expression profiling reveals conserved and non-conserved miR-140 targets. RNA Biol 2011;8: 607–615.
129.
Tokunaga C, Yoshino K, Yonezawa K: mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 2004;313: 443–446.
130.
Caron A, Richard D, Laplante M: The roles of mTOR complexes in lipid metabolism. Annu Rev Nutr 2015;35: 321–348.
131.
Jewell JL, Russell RC, Guan KL: Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 2013;14: 133–139.
132.
Laplante M, Sabatini DM: mTOR signaling in growth control and disease. Cell 2012;149: 274–293.
133.
Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J: Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998;273: 14484–14494.
134.
Guan Y, Yang X, Yang W, Charbonneau C, Chen Q: Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. FASEB J 2014;28: 4470–4481.
135.
Inoki K, Li Y, Zhu T, Wu J, Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4: 648–657.
136.
Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell 2006;124: 471–484.
137.
Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev 2004;18: 1926–1945.
138.
Pullen N, Thomas G: The modular phosphorylation and activation of p70s6k. FEBS Lett 1997;410: 78–82.
139.
Saitoh M, Pullen N, Brennan P, Cantrell D, Dennis PB, Thomas G: Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site. J Biol Chem 2002;277: 20104–20112.
140.
Zinzalla V, Stracka D, Oppliger W, Hall MN: Activation of mTORC2 by association with the ribosome. Cell 2011;144: 757–768.
141.
Chen J, Long F: mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development 2014;141: 2848–2854.
142.
Chen J, Holguin N, Shi Y, Silva MJ, Long F: mTORC2 signaling promotes skeletal growth and bone formation in mice. J Bone Miner Res 2015;30: 369–378.
143.
Phornphutkul C, Wu KY, Auyeung V, Chen Q, Gruppuso PA: mTOR signaling contributes to chondrocyte differentiation. Dev Dyn 2008;237: 702–712.
144.
Srinivas V, Shapiro IM: Chondrocytes embedded in the epiphyseal growth plates of long bones undergo autophagy prior to the induction of osteogenesis. Autophagy 2006;2: 215–216.
145.
Srinivas V, Bohensky J, Shapiro IM: Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs 2009;189: 88–92.
146.
Savabi F: Interaction of creatine kinase and adenylate kinase systems in muscle cells. Mol Cell Biochem 1994;133–134: 145–152.
147.
Bohensky J, Leshinsky S, Srinivas V, Shapiro IM: Chondrocyte autophagy is stimulated by HIF-1 dependent AMPK activation and mTOR suppression. Pediatr Nephrol 2010;25: 633–642.
148.
Park D, Jeong H, Lee MN, Koh A, Kwon O, Yang YR, Noh J, Suh PG, Park H, Ryu SH: Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep 2016;6: 21772.
149.
Levine B, Klionsky DJ: Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6: 463–477.
150.
Füllgrabe J, Klionsky DJ, Joseph B: The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol 2014;15: 65–74.
151.
Sterner DE, Berger SL: Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000;64: 435–459.
152.
Chiba T, Yokosuka O, Fukai K, Kojima H, Tada M, Arai M, Imazeki F, Saisho H: Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology 2004;66: 481–491.
153.
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370: 737–749.
154.
Funato H, Oda S, Yokofujita J, Igarashi H, Kuroda M: Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS One 2011;6:e18950.
155.
Furumatsu T, Tsuda M, Yoshida K, Taniguchi N, Ito T, Hashimoto M, Ito T, Asahara H: Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem 2005;280: 35203–35208.
156.
Hong S, Derfoul A, Pereira-Mouries L, Hall DJ: A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J 2009;23: 3539–3552.
157.
Kanfi Y, Peshti V, Gozlan YM, Rathaus M, Gil R, Cohen HY: Regulation of SIRT1 protein levels by nutrient availability. FEBS Lett 2008;582: 2417–2423.
158.
Kanfi Y, Shalman R, Peshti V, Pilosof SN, Gozlan YM, Pearson KJ, Lerrer B, Moazed D, Marine JC, de Cabo R, et al: Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett 2008;582: 543–548.
159.
McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M: The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 2003;23: 38–54.
160.
Picard F, Kurtev M, Chung N, Topark- Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429: 771–776.
161.
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434: 113–118.
162.
Rubinsztein DC, Marino G, Kroemer G: Autophagy and aging. Cell 2011;146: 682–695.
163.
Ghosh HS, McBurney M, Robbins PD: SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010;5:e9199.
164.
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008;105: 3374–3379.
165.
Monteserin-Garcia J, Al-Massadi O, Seoane LM, Alvarez CV, Shan B, Stalla J, Paez-Pereda M, Casanueva FF, Stalla GK, Theodoropoulou M: Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis. FASEB J 2013;27: 1561–1571.
166.
Yamamoto M, Iguchi G, Fukuoka H, Suda K, Bando H, Takahashi M, Nishizawa H, Seino S, Takahashi Y: SIRT1 regulates adaptive response of the growth hormone – insulin-like growth factor-I axis under fasting conditions in liver. Proc Natl Acad Sci USA 2013;110: 14948–14953.
167.
Gan L, Han Y, Bastianetto S, Dumont Y, Unterman TG, Quirion R: FoxO-dependent and -independent mechanisms mediate SirT1 effects on IGFBP-1 gene expression. Biochem Biophys Res Commun 2005;337: 1092–1096.
168.
Li P, Liang ML, Zhu Y, Gong YY, Wang Y, Heng D, Lin L: Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts. World J Gastroenterol 2014;20: 4648–4661.
169.
Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, Schneider JI, Chai H, Bronson RT, Tsai LH, et al: Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA 2010;107: 21790–21794.
170.
Piao J, Tsuji K, Ochi H, Iwata M, Koga D, Okawa A, Morita S, Takeda S, Asou Y: Sirt6 regulates postnatal growth plate differentiation and proliferation via Ihh signaling. Sci Rep 2013;3: 3022.
171.
Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, et al: The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012;18: 1643–1650.
172.
Takasaka N, Araya J, Hara H, Ito S, Kobaya-shi K, Kurita Y, Wakui H, Yoshii Y, Yumino Y, Fujii S, et al: Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 2014;192: 958–968.
173.
Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, et al: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010;140: 280–293.
174.
Oh M, Choi IK, Kwon HJ: Inhibition of histone deacetylase1 induces autophagy. Biochem Biophys Res Commun. 2008;369: 1179–-1183.
175.
Bradley EW, Carpio LR, Westendorf JJ: Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem 2013;288: 9572–9582.
176.
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003;115: 727–738.
177.
Oehme I, Linke JP, Bock BC, Milde T, Lodrini M, Hartenstein B, Wiegand I, Eckert C, Roth W, Kool M, et al: Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci USA 2013; 110:E2592–E2601.
178.
Kennedy SG, Kandel ES, Cross TK, Hay N: Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 1999;19: 5800–5810.
179.
Marino G, Niso-Santano M, Baehrecke EH, Kroemer G: Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15: 81–94.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.