The thyroid hormone (TH) system plays a central role in central physiological processes of many species, including mammals and humans, ranging from growth and cell differentiation, energy metabolism, thermoregulation and phasing of hibernation or annual movements of migratory species, metamorphosis from larvae to adult forms, brain development, reproduction, or the cardiovascular system. Several chemicals are known to be TH-disrupting compounds (THDCs) and have been shown to interact with virtually all elements of TH homeostasis such as feedback mechanisms with the hypothalamus-pituitary axis, TH synthesis, TH storage and release from the thyroid gland, transport protein binding and TH distribution in tissues and organs, cellular TH uptake, intracellular TH metabolism, and TH receptor binding. Therefore, chemicals interfering with the TH homeostasis have the potential to interact with many of these important processes, and especially early-life stage exposure results in permanent alterations of tissue organization and homeostatic regulation of adaptive processes. This is not only of theoretical importance as the reported plasma concentrations of THDCs in human plasma fall well within the range of reported in vitro effect concentrations, and this is of even higher importance as the developing fetus and young children are in a sensitive developmental stage.

1.
Bergman Å, Heindel JJ, Kasten T, Kidd KA, Jobling S, Neira M, Zoeller TR, Becher G, Bjerregaard P, Bornman R, Brandt I, Kortenkamp A, Muir D, Brune Drisse M-N, Ochieng R, Skakkebaek NE, Byléhn AS, Iguchi T, Toppari J, Woodruff TJ: The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect 2013;121:104-106.
2.
Brouwer A, Morse DC, Lans MC, Schuur GA, Murk AJ, Klasson-Wehler E, Bergman Å, Visser TJ: Interactions of persistent environmental organohalogens with the thyroid hormones system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health 1998;14:59-84.
3.
Zimmer K, Gutleb AC, Lyche JL, Dahl E, Oskam I, Krogenæs A, Skaare JU, Ropstad E: Altered stress-induced cortisol levels in goats exposed to polychlorinated biphenyls (PCB 126 and PCB 153) during foetal and postnatal development. J Toxicol Environ Health A 2008;72:164-172.
4.
Zimmer KE, Kraugerud M, Aleksandersen M, Gutleb AC, Olsaker I, Østby GC, Dahl E, Skaare JU, Ropstad E: Foetal adrenal development: comparing effects of combined exposures with PCB 118 and PCB 153 in a sheep model. Environ Toxicol 2013;28:164-177.
5.
Murk AJ, van den Berg JHJ, Fellinger M, Rozemeijer MJC, Swennen C, Duiven P, Boon JP, Brouwer A, Koeman JH: Toxic and biochemical effects of 3,3′,4,4'-tetrachlorobiphenyl (CB-77) and Clophen A50 on eider ducklings (Somateria mollissima) in a semi-field experiment. Environ Pollut 1994;86:21-30.
6.
Gutleb AC, Cenijn P, van Velzen M, Lie E, Ropstad E, Skaare JU, Malmberg T, Bergman Å, Gabrielsen GW, Legler J: Complete saturation of thyroid hormone transport capacity of TTR in wild living polar bear (Ursus maritimus) by metabolites of PCBs. Environ Sci Tech 2010;44:3149-3154.
7.
Montaño M, Gutleb AC, Murk AJ: Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife. Environ Sci Technol 2013;47:6071-6081.
8.
Meerts IATM, Assink Y, Cenijn PH, van den Berg JHJ, Weijers BM, Bergman Å, Koeman JH, Brouwer Å: Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat. Toxicol Sci 2002;68:361-371.
9.
Murk AJ, Rijntjes E, Blaauwboer B, Clewell R, Crofton K, Dingemans M, Furlow JD, Kavlock R, Koehrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC: Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 2013;27:1320-1346.
10.
Heyland A, Moroz LL: Cross-kingdom hormonal signaling: an insight from the thyroid hormone functions in marine larvae. J Exp Biol 2005;208:4355-4361.
11.
Gudernatsch JF: Feeding experiments on tadpoles: I. The influence of specific organs given as food on growth and differentiation. A contribution to the knowledge of organs with internal secretion. Wilhelm Roux Arch Entwicklungsmech Organismen 1912;35:457-483.
12.
Porterfield SP, Hendrich CF: The role of thyroid hormone in prenatal and neonatal neurological development - current perspectives. Endocrine Rev 1993;14:94-106.
13.
Howdeshell KL: A model of the development of the brain as a construct of the thyroid system. Environ Health Perspect 2002;110:337-348.
14.
Warner A, Mittag J: Thyroid hormone and the central control of homeostasis. J Mol Endocrinol 2012;49:R29-R35.
15.
Cheng SY, Leonard JL, Davis PJ: Molecular aspects of thyroid hormone actions. Endocr Rev 2010;31:139-170.
16.
Mullur R, Liu Y-Y, Brent GA: Thyroid hormone regulation of metabolism. Physiol Rev 2014;94:355-382.
17.
Jahnke GD, Choksi NY, Moore JA, Shelby MD: Thyroid toxicants: assessing reproductive health effects. Environ Health Perspect 2004;112:363-368.
18.
Zoeller RT, Dowling ALS, Herzig CTA, Iannacone EA, Gauger KJ, Bansal R: Thyroid hormone, brain development, and the environment. Environ Health Perspect 2002;110:355-361.
19.
Zoeller RT: Transplacental thyroxine and fetal brain development. J Clin Invest 2003;111:954-957.
20.
Krassas G, Karras S, Pontikides N: Thyroid disease during pregnancy: a number of important issues. Hormones 2015;14:59-69.
21.
Lavado-Autric R, Ausó E, García-Velasco JV, del Carmen Arufe M, del Rey FE, Berbel P, de Escobar GM: Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 2003;111:1073-1082.
22.
Zimmermann MB: The role of iodine in human growth and development. Semin Cell Dev Biol 2011;22:645-652.
23.
Chiamolera MI, Wondisford FE: Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 2009;150:1091-1096.
24.
Santini F, Vitti P, Ceccarini G, Mammoli C, Rosellini V, Pelosini C, Marsili A, Tonacchera M, Agretti P, Santoni T, Chiovato L, Pinchera A: In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity. J Endocrinol Invest 2003;26:950-955.
25.
Wolff J: Anion selectivity by the sodium iodide symporter. Endocrinology 2003;144:247-252.
26.
Capen CC: Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol 1997;25:39-48.
27.
Lans MC, Klasson-Wehler E, Willemsen M, Meussen E, Safe S, Brouwer A: Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem Biol Interact 1993;88:7-21.
28.
Kinne A, Kleinau G, Hoefig CS, Grüters A, Köhrle J, Krause G, Schweizer U: Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 2010;285:28054-28063.
29.
Morse DC, Groen D, Veerman M, van Amerongen CJ, Koeter HB, Smits van Prooije AE, Visser TJ, Koeman JH, Brouwer A: Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats. Toxicol Appl Pharmacol 1993;122:27-33.
30.
Vansell NR, Klaassen CD: Effect of microsomal enzyme inducers on the biliary excretion of triiodothyronine (T3) and its metabolites. Toxicol Sci 2002;65:184-191.
31.
Schuur AG, Bergman A, Brouwer A, Visser TJ: Effects of pentachlorophenol and hydroxylated polychlorinated biphenyls on thyroid hormone conjugation in a rat and a human hepatoma cell line. Toxicol In Vitro 1999;13:417-425.
32.
Guo GL, Choudhuri S, Klaassen CD: Induction profile of rat organic anion transporting polypeptide 2 (OATP2) by prototypical drug-metabolizing enzyme inducers that activate gene expression through ligand-activated transcription factor pathways. J Pharmacol Exp Ther 2002;300:206-212.
33.
Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD, Murk AJ: Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In Vitro 2011;25:257-266.
34.
Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE: Critical role for thyroid hormone receptor β2 in the regulation of paraventricular thyrotropin-releasing neurons. J Clin Invest 2001;107:1017-1023.
35.
Hollenberg AN: The role of thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid 2008;18:131-139.
36.
Dardente H, Hazlerigg DG, Ebling FJP: Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 2014;5:19.
37.
Sharma V, Hays WR, Wood WM, Pugazhenti U, St Germain DL, Bianco AC, Krezel W, Chambon P, Haugen BR: Effects of rexinoids on thyrotrope function and the hypothalamic-pituitary-thyroid axis. Endocrinology 2006;147:1438-1451.
38.
Decherf S, Seugnet I, Fini J-B, Clerget-Froidevaux M-S, Demeneix BA: Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants. Mol Cell Endocrinol 2010;323:172-182.
39.
Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N: The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 2003;24:48-77.
40.
Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, Maenhaut C, Miot F, van Sande J, Many MC, Dumont JE: Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab 2007;92:3764-3773.
41.
Brix K, Führer D, Biebermann H: Molecules important for thyroid hormone synthesis and action - known facts and future perspectives. Thyroid Res 2011;4(suppl 1):S9.
42.
Van Sande J, Massart C, Beauwens R, Schoutens A, Costagliola S, Dumont JE, Wolff J: Anion selectivity by the sodium iodide symporter. Endocrinology 2003;144:247-252.
43.
Divi RL, Doerge DR: Mechanism-based inactivation of lactoperoxidase and thyroid peroxidase by resorcinol derivatives. Biochemistry 1994;33:9668-9674.
44.
Schmutzler C, Bacinski A, Gotthardt I, Huhne K, Ambrugger P, Klammer H, Schlecht C, Hoang-Vu C, Grüters A, Wuttke W, Jarry H, Köhrle J: The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent in vitro inhibitor of human recombinant thyroid peroxidase. Endocrinology 2007;148:2835-2844.
45.
Cheek AO, Kow K, Chen J, McLachlan JA: Potential mechanism of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid binding globulin. Environ Health Perspect 1999;107:273-278.
46.
Yen PM: Physiological and molecular basis of thyroid hormone action. Physiol Rev 2001;81:1097-1142.
47.
Schreiber G, Southwell BR, Richardson SJ: Hormone delivery system to the brain - transthyretin. Exp Clin Endocrinol 1995;103:75-80.
48.
Southwell BR, Duan W, Alcorn D, Brack C, Richardson SJ, Köhrle J, Schreiber G: Thyroxine transport to the brain: role of protein synthesis by the choroids plexus. Endocrinology 1993;133:2116-2126.
49.
Malmberg T, Cenijn PH, Gutleb AC, Bergman Å: Methanol-water dissociation constants and relative transthyretin affinities for hydroxylated metabolites of PCB and PBDE congeners; in Malmberg T (ed): Identification and Characterisation of Hydroxylated PCB and PBDE Metabolites in Blood: Congener Specific Synthesis and Analysis. PhD thesis, Stockholm University, 2004, p 48.
50.
Hamers T, Kamstra JH, Sonnefeld E, Murk AJ, Kester MH, Andersson PL, Legler J, Brouwer A: In vitro profiling of the endocrine-disrupting potency of flame retardants. Toxicol Sci 2006;92:157-173.
51.
Brouwer A, van den Berg KJ: Binding of a metabolite of 3,3′,4,4'-tetrachlorobiphenyl to transthyretin reduces serum vitamin A transport by inhibiting the formation of the protein complex carrying both retinol and thyroxin. Toxicol Appl Pharmacol 1986;85:301-312.
52.
Meerts IATM, van Zanden JJ, Luijks EAC, van Leeuwen-Bol I, Marsh G, Jacobsson E, Bergman Å, Brouwer A: Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci 2000;56:95-104.
53.
Bergman Å, Klasson-Wehler E, Kuroki H: Selective retention of hydroxylated PCB metabolites in blood. Environ Health Perspect 1994;102:464-469.
54.
Hovander L, Malmberg T, Athanasiadou M, Athanassiadis I, Rahm S, Bergman Å, Klasson-Wehler E: Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol 2002;42:105-117.
55.
Verreault J, Muir DC, Norstrom RJ, Stirling I, Fisk AT, Gabrielsen GW, Derocher AE, Evans TJ, Dietz R, Sonne C, Sandala GM, Gebbink W, Riget FF, Born EW, Taylor MK, Nagy J, Letcher RJ: Chlorinated hydrocarbon contaminants and metabolites in polar bears (Ursus maritimus) from Alaska, Canada, East Greenland, and Svalbard: 1996-2002. Sci Total Environ 2005;351-352, 369-390.
56.
Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeold A, Bianco AC: Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008;29:898-938.
57.
Scanlan TS: Minireview: 3-iodothyronamine (T1AM): a new player on the thyroid endocrine team? Endocrinology 2009;150:1108-1111.
58.
Kester MHA, Visser TJ: Sulfation of thyroid hormones; in Pacifici GM, Coughtrie MWH (eds): Human Cytosolic Sulfotransferases. Boca Raton, CRC Press, 2005, pp 121-134.
59.
Schuur AG, Brouwer A, Bergman A, Coughtrie MW, Visser TJ: Inhibition of thyroid hormone sulfation by hydroxylated metabolites of polychlorinated biphenyls. Chem Biol Interact 1998;109:293-297.
60.
Visser TJ: Hormone metabolism; in DeGroot L (ed): Thyroid Disease Manager. 2008. www.thyroidmanager.org.
61.
Morse DC, Wesseling W, Koeman JH, Brouwer A: Alterations in rat brain thyroid hormone status following pre and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol 1996;136:269-279.
62.
Hallgren S, Sinjari T, Hakansson H, Darnerud PO: Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol 2001;75:200-208.
63.
Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ: Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 2001;22:451-476.
64.
Obaidat A, Roth M, Hagenbuch B: The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 2012;52:135-151.
65.
Hagenbuch B: Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract Res Clin Endocrinol Metab 2007;21:209-221.
66.
Taylor PM, Ritchie JW: Tissue uptake of thyroid hormone by amino acid transporters. Best Pract Res Clin Endocrinol Metab 2007;21:237-251.
67.
Kinne A, Kleinau G, Hoefig CS, Grüters A, Köhrle J, Krause G, Schweizer U: Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 2010;285:28054-28063.
68.
Flamant F, Gauthier K: Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response. Biochim Biophys Acta 2012;1830:3900-3907.
69.
Chocron ES, Sayre NL, Holstein D, Saelim N, Ibdah JA, Dong LQ, Zhu X, Cheng SY, Lechleiter JD: The trifunctional protein mediates thyroid hormone receptor-dependent stimulation of mitochondria metabolism. Mol Endocrinol 2012;26:1117-1128.
70.
Pessemesse L, Schlernitzauer A, Sar C, Levin J, Grandemange S, Seyer P, Favier FB, Kaminski S, Cabello G, Wrutniak-Cabello C, Casas F: Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity. FASEB J 2012;26:748-756.
71.
Gauger KJ, Kato Y, Haraguchi K, Lehmler HJ, Robertson LW, Bansal R, Zoeller RT: Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ Health Perspect 2004;112:516-523.
72.
Iwasaki T, Miyazaki W, Takeshita A, Kuroda Y, Koibuchi N: Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem Biophys Res Commun 2002;299:384-388.
73.
Gilbert ME, Rovet J, Chen Z, Koibuchi N: Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 2012;33:842-852.
74.
Oppenheimer JH, Schwartz HL: Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 1997;18:462-475.
75.
Kimura-Kuroda J, Nagata I, Negishi-Kato M, Kuroda Y: Thyroid hormone-dependent development of mouse cerebellar Purkinje cells in vitro. Brain Res Dev Brain Res 2002;137:55-65.
76.
Constantinou C, Margarity M, Valcana T: Region-specific effects of hypothyroidism on the relative expression of thyroid hormone receptors in adult rat brain. Mol Cell Biochem 2005;278:93-100.
77.
Bernal J, Guadaño-Ferraz A, Morte B: Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 2003;13:1005-1012.
78.
Darras VM: Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone signaling in the developing brain. Cerebellum 2007;1:1-12.
79.
Chatonnet F, Flamant F, Morte B: A temporary compendium of thyroid hormone target genes in brain. Biochim Biophys Acta 2015;1849:122-129.
80.
Park H-Y, Park J-S, Sovcikova E, Kocan A, Linderholm L, Bergman Å, Trnovex T, Hertz-Picciotto I: Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ Health Perspect 2009;11:1600-1606.
81.
Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, Calafat AM, Wolff MS: Endocrine disruptors and childhood social impairment. Neurotoxicology 2011;32:261-267.
82.
de Cock M, Maas YGH, van de Bor M: Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr 2012;101:811-818.
83.
Grandjean P: Only one Chance. How Environmental Pollution Impairs Brian Development - and How to Protect the Brains of the Next Generation. New York, Oxford University Press, 2013.
84.
Derksen-Lubsen G, Verkerk PH: Neuropsychologic development in early-treated congenital hypothyroidism: analysis of literature data. Pediatr Res 1996;39:561-566.
85.
Boas M, Feldt-Rasmusen U, Skakkebæk NE, Main KM: Environmental chemicals and thyroid function. Eur J Endocrinol 2006;154:599-611.
86.
Woodruff TJ, Zota AR, Schwartz JM: Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Perspect 2011;119:878-885.
87.
Jensen MS, Nørgaard-Pedersen B, Toft G, Hougaard DM, Bonde JP, Cohen A, Thulstrup AM, Ivell R, Anand-Ivell R, Lindh CH, Jönsson BAG: Phthalates and perfluorooctanesulfonic acid in human amniotic fluid: temporal trends and timing of amniocentesis in pregnancy. Environ Health Perspect 2012;120:897-903.
88.
Meijer L, Weiss J, van Velzen M, Brouwer A, Begrman Å, Sauer PJ: Serum concentrations of neutral and phenolic organhalogens in pregnant women and some of their infants in the Netherlands. Environ Sci Technol 2008;42:3428-3433.
89.
Kodama H, Ota H: Transfer of polychlorinated biphenyls to infants from their mothers. Arch Environ Health 1980;35:95-100.
90.
Bellanger M, Demeneix B, Grandjean P, Zoeller TR, Trasande L: Neurobehavioural deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 2015;100:1256-1266.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.