Abstract
Humans are significantly exposed to phthalates via food packaging, cosmetics and medical devices such as tubings and catheters. Testicular Leydig cells (LCs) are suggested to be among the main targets of phthalate toxicity in the body. However, their sensitivity to phthalates is species-dependent. This paper describes the response of the LCs from different species (mouse, rat and human) to phthalate exposure in different experimental paradigms (in vivo, ex vivo and in vitro), with particular focus on mechanisms of phthalate action on LC steroidogenesis. A comprehensive analysis of the impact of phthalate diesters and phthalate monoesters on LCs in different stages of their development is presented and possible mechanisms of phthalates action are discussed. Finally novel, not yet fully elucidated sites of action of phthalate monoesters on the backdoor pathway of 5α-dihydrotestosterone biosynthesis in immature mouse LCs and their effects on steroidogenesis and redox state in adult mouse LCs are reported.