The C-type natriuretic peptide (CNP) and its receptor (NPR-B) are recognized as important regulators of longitudinal growth. Animal models involving CNP or NPR-B genes (Nppc or Npr2) support the fundamental role of CNP/NPR-B for endochondral ossification. Studies with these animals allow the development of potential drug therapies for dwarfism. Polymorphisms in two genes related to the CNP pathway have been implicated in height variability in healthy individuals. Biallelic loss-of-function mutations in NPR-B gene (NPR2) cause acromesomelic dysplasia type Maroteux, a skeletal dysplasia with extremely short stature. Heterozygous mutations in NPR2 are responsible for nonsyndromic familial short stature. Conversely, heterozygous gain-of-function mutations in NPR2 cause tall stature, with a variable phenotype. A phase 2 multicenter and multinational trial is being developed to evaluate a CNP analog treatment for achondroplasia. Pediatricians and endocrinologists must be aware of growth disorders related to natriuretic peptides, although there is still much to be learned about its diagnostic and therapeutic use.

1.
Silventoinen K, Sammalisto S, Perola M, et al: Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res 2003;6:399-408.
2.
Lanktree MB, Guo Y, Murtaza M, et al: Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height. Am J Hum Genet 2011;88:6-18.
3.
Lango Allen H, Estrada K, Lettre G, et al: Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010;467:832-838.
4.
Gudbjartsson DF, Walters GB, Thorleifsson G, et al: Many sequence variants affecting diversity of adult human height. Nat Genet 2008;40:609-615.
5.
Soranzo N, Rivadeneira F, Chinappen-Horsley U, et al: Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet 2009;5:e1000445.
6.
Estrada K, Krawczak M, Schreiber S, et al: A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum Mol Genet 2009;18:3516-3524.
7.
Berndt SI, Gustafsson S, Magi R, et al: Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 2013;45:501-512.
8.
Yasoda A, Ogawa Y, Suda M, et al: Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J Biol Chem 1998;273:11695-11700.
9.
Olney RC: C-type natriuretic peptide in growth: a new paradigm. Growth Horm IGF Res 2006;16(suppl A):S6-S14.
10.
Chusho H, Tamura N, Ogawa Y, et al: Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 2001;98:4016-4021.
11.
Tsuji T, Kunieda T: A loss-of-function mutation in natriuretic peptide receptor 2 (NPR2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J Biol Chem 2005;280:14288-14292.
12.
Tamura N, Doolittle LK, Hammer RE, et al: Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA 2004;101:17300-17305.
13.
Yasoda A, Komatsu Y, Chusho H, et al: Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 2004;10:80-86.
14.
Yasoda A, Kitamura H, Fujii T, Ket al: Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology 2009;150:3138-3144.
15.
Bartels CF, Bukulmez H, Padayatti P, et al: Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 2004;75:27-34.
16.
Vasques GA, Amano N, Docko AJ, et al: Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. J Clin Endocrinol Metab 2013;98:E1636-E1644.
17.
Amano N, Mukai T, Ito Y, et al: Identification and functional characterization of two novel NPR2 mutations in Japanese patients with short stature. J Clin Endocrinol Metab 2014;99:E713-E718.
18.
Miura K, Namba N, Fujiwara M, et al: An overgrowth disorder associated with excessive production of CGMP due to a gain-of-function mutation of the natriuretic peptide receptor 2 gene. PLoS One 2012;7:e42180.
19.
Hannema SE, van Duyvenvoorde HA, Premsler T, et al: An activating mutation in the kinase homology domain of the natriuretic peptide receptor-2 causes extremely tall stature without skeletal deformities. J Clin Endocrinol Metab 2013;98:E1988-E1998.
20.
Miura K, Kim OH, Lee HR, et al: Overgrowth syndrome associated with a gain-of-function mutation of the natriuretic peptide receptor 2 (NPR2) gene. Am J Med Genet A 2014;164A:156-163.
21.
Bocciardi R, Giorda R, Buttgereit J, et al: Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum Mutat 2007;28:724-731.
22.
Moncla A, Missirian C, Cacciagli P, et al: A cluster of translocation breakpoints in 2q37 is associated with overexpression of NPPC in patients with a similar overgrowth phenotype. Hum Mutat 2007;28:1183-1188.
23.
Volpe M, Rubattu S, Burnett J Jr: Natriuretic peptides in cardiovascular diseases: Current use and perspectives. Eur Heart J 2014;35:419-425.
24.
Best PJ, Burnett JC, Wilson SH, et al: Dendroaspis natriuretic peptide relaxes isolated human arteries and veins. Cardiovasc Res 2002;55:375-384.
25.
Pejchalova K, Krejci P, Wilcox WR: C-natriuretic peptide: an important regulator of cartilage. Mol Genet Metab 2007;92:210-215.
26.
Nakao K, Ogawa Y, Suga S, Imura H: Molecular biology and biochemistry of the natriuretic peptide system. II. Natriuretic peptide receptors. J Hypertens 1992;10:1111-1114.
27.
Potter LR, Abbey-Hosch S, Dickey DM: Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006;27:47-72.
28.
Schulz S: C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides 2005;26:1024-1034.
29.
Pilz RB, Casteel DE: Regulation of gene expression by cyclic GMP. Circ Res 2003;93:1034-1046.
30.
Miyazawa T, Ogawa Y, Chusho H, et al: Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediated endochondral ossification. Endocrinology 2002;143:3604-3610.
31.
Sogawa C, Tsuji T, Shinkai Y, et al: Short-limbed dwarfism: SLW is a new allele of NPR2 causing chondrodysplasia. J Hered 2007;98:575-580.
32.
Geister KA, Brinkmeier ML, Hsieh M, et al: A novel loss-of-function mutation in NPR2 clarifies primary role in female reproduction and reveals a potential therapy for acromesomelic dysplasia, Maroteaux type. Hum Mol Genet 2013;22:345-357.
33.
Zhang M, Su YQ, Sugiura K, et al: Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 2010;330:366-369.
34.
Sato Y, Cheng Y, Kawamura K, et al: C-type natriuretic peptide stimulates ovarian follicle development. Mol Endocrinol 2012;26:1158-1166.
35.
Kake T, Kitamura H, Adachi Y, et al: Chronically elevated plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice. Am J Physiol Endocrinol Metab 2009;297:E1339-E1348.
36.
Matsukawa N, Grzesik WJ, Takahashi N, et al: The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 1999;96:7403-7408.
37.
Jaubert J, Jaubert F, Martin N, et al: Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (NPR3). Proc Natl Acad Sci USA 1999;96:10278-10283.
38.
Olney RC, Bukulmez H, Bartels CF, et al: Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J Clin Endocrinol Metab 2006;91:1229-1232.
39.
Langer LO, Garrett RT: Acromesomelic dysplasia. Radiology 1980;137:349-355.
40.
Khan S, Ali RH, Abbasi S, et al: Novel mutations in natriuretic peptide receptor-2 gene underlie acromesomelic dysplasia, type Maroteaux. BMC Med Genet 2012;13:44.
41.
Hachiya R, Ohashi Y, Kamei Y, et al: Intact kinase homology domain of natriuretic peptide receptor B is essential for skeletal development. J Clin Endocrinol Metab 2007;92:4009-4014.
42.
Hume AN, Buttgereit J, Al-Awadhi AM, et al: Defective cellular trafficking of missense NPR-B mutants is the major mechanism underlying acromesomelic dysplasia-type Maroteaux. Hum Mol Genet 2009;18:267-277.
43.
Borrelli P, Fasanelli S, Marini R: Acromesomelic dwarfism in a child with an interesting family history. Pediatr Radiol 1983;13:165-168.
44.
Malaquias AC, Scalco RC, Fontenele EG, et al: The sitting height/height ratio for age in healthy and short individuals and its potential role in selecting short children for SHOX analysis. Horm Res Paediatr 2013;80:449-456.
45.
Fenrick R, McNicoll N, De Lean A: Glycosylation is critical for natriuretic peptide receptor-B function. Mol Cell Biochem 1996;165:103-109.
46.
Horton WA, Hall JG, Hecht JT: Achondroplasia. Lancet 2007;370:162-172.
47.
Agoston H, Khan S, James CG, et al: C-type natriuretic peptide regulates endochondral bone growth through p38 MAP kinase-dependent and -independent pathways. BMC Dev Biol 2007;7:18.
48.
Hutchison MR: BDNF alters ERK/p38 MAPK activity ratios to promote differentiation in growth plate chondrocytes. Mol Endocrinol 2012;26:1406-1416.
49.
Chrisman TD, Garbers DL: Reciprocal antagonism coordinates C-type natriuretic peptide and mitogen-signaling pathways in fibroblasts. J Biol Chem 1999;274:4293-4299.
50.
Ozasa A, Komatsu Y, Yasoda A, et al: Complementary antagonistic actions between C-type natriuretic peptide and the MAPK pathway through FGFR-3 in ATDC5 cells. Bone 2005;36:1056-1064.
51.
Lorget F, Kaci N, Peng J, et al: Evaluation of the therapeutic potential of a CNP analog in a FGFR3 mouse model recapitulating achondroplasia. Am J Hum Genet 2012;91:1108-1114.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.