The development of the endocrine pancreas is regulated by several cell-matrix interactions that generate a diverse array of intracellular signals determining the progression of a multipotent progenitor to a mature endocrine cell. This process involves interactions between the epithelium, mesenchyma, and endothelial cells. Later in development, coordinated signaling contributes to the maintenance of the differentiated endocrine cell phenotype. It has been demonstrated that key factors as well as the sequence of events involved in mouse pancreatic development is conserved in humans. This review will discuss our current knowledge in mouse as well as human pancreatic development and highlights some important transcription factors associated with human disease.

1.
Unger RH, Dobbs RE, Orci L: Insulin, glucagon, and somatostatin secretion in the regulation of metabolism. Annu Rev Physiol 1978;40:307–343.
2.
Heinis M, Simon MT, Ilc K, Mazure NM, Pouyssegur J, Scharfmann R, Duvillie B: Oxygen tension regulates pancreatic beta-cell differentiation through hypoxia-inducible factor 1alpha. Diabetes 2010;59:662–669.
3.
Fraker CA, Alvarez S, Papadopoulos P, Giraldo J, Gu W, Ricordi C, Inverardi L, Dominguez-Bendala J: Enhanced oxygenation promotes beta-cell differentiation in vitro. Stem Cells 2007;25:3155–3164.
4.
Ranjan AK, Joglekar MV, Hardikar AA: Endothelial cells in pancreatic islet development and function. Islets 2009;1:2–9.
5.
Jensen J: Gene regulatory factors in pancreatic development. Dev Dynamics 2004;229:176–200.
6.
Kim SK, Hebrok M: Intercellular signals regulating pancreas development and function. Genes Dev 2001;15:111–127.
7.
Oliver-Krasinski JM, Stoffers DA: On the origin of the beta cell. Genes Dev 2008;22:1998–2021.
8.
Pictet R, Rutter WJ: Development of the embryonic pancreas; in Steiner DF, Frenkel N (eds): Handbook of Physiology. Washington, American Physiological Society, 1972, pp 25–66.
9.
Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P: Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 2003;17:2591–2603.
10.
Gu G, Dubauskaite J, Melton DA: Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002;129:2447–2457.
11.
Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, DeAngelis MH, Lendahl U, Edlund H: Notch signaling controls pancreatic cell differentiation. Nature 1999;400:877–881.
12.
Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, Scherer G, Sander M: SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA 2007;104:1865–1870.
13.
Hua H, Zhang YQ, Dabernat S, Kritzik M, Dietz D, Sterling L, Sarvetnick N: BMP4 regulates pancreatic progenitor cell expansion through Id2. J Biol Chem 2006;281:13574–13580.
14.
Zhou JX, Brusch L, Huang S: Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS One 2011;6:e14752.
15.
Gradwohl G, Dierich A, LeMeur M, Guillemot F: Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000;97:1607–1611.
16.
Jensen J, Heller R, Funder-Nielsen T, Pedersen E, Lindsell C, Weinmaster G, Madsen OD, Serup P: Independent development of pancreatic alpha and beta-cells from neurogenin3-expressing precursors: a role for notch pathway in repression of premature differentiation. Diabetes 2000;49:163–176.
17.
Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV: The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genetics 2002;32:128–134.
18.
Miyatsuka T, Kosaka Y, Kim H, German MS: Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a. Proc Natl Acad Sci USA 2011;108:185–190.
19.
Kim SY, Rane SG: The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors. Development 2011;138:1903–1912.
20.
Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, Patch AM, Grabs R, Wang J, Lynn FC, Miyatsuka T, Mitchell J, Seerke R, Desir J, Eijnden SV, Abramowicz M, Kacet N, Weill J, Renard ME, Gentile M, Hansen I, Dewar K, Hattersley AT, Wang R, Wilson ME, Johnson JD, Polychronakos C, German MS: Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010;463:775–780.
21.
Smith SB, Ee HC, Conners JR, German MS: Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol 1999;19:8272–8280.
22.
Sosa-Pineda B: The gene Pax4 is an essential regulator of pancreatic beta-cell development. Mol Cells 2004;18:289–294.
23.
Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, German MS: Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 1998;125:2213–2221.
24.
Kordowich S, Collombat P, Mansouri A, Serup P: Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage. BMC Dev Biol 2011;11:52.
25.
Oster A, Jensen J, Edlund H, Larsson LI: Homeobox gene product Nkx 6.1 immunoreactivity in nuclei of endocrine cells of rat and mouse stomach. J Histochem Cytochem 1998;46:717–721.
26.
Sander M, Paydar S, Ericson J, Briscoe J, Berber E, German M, Jessell TM, Rubenstein JL: Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes Dev 2000;14:2134–2139.
27.
Pang K, Mukonoweshuro C, Wong GG: Beta cells arise from glucose transporter type 2 (Glut2)-expressing epithelial cells of the developing rat pancreas. Proc Natl Acad Sci USA 1994;91:9559–9563.
28.
Jackerott M, Oster A, Larsson LI: PYY in developing murine islet cells: comparisons to development of islet hormones, NPY, and BrdU incorporation. J Histochem Cytochem 1996;44:809–817.
29.
Herrera PL, Huarte J, Sanvito F, Meda P, Orci L, Vassalli JD: Embryogenesis of the murine endocrine pancreas; early expression of the pancreatic polypeptide gene. Development 1991;113:1257–1265.
30.
Vuguin PM, Kedees MH, Cui L, Guz Y, Gelling RW, Nejathaim M, Charron MJ, Teitelman G: Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 2006;147:3995–4006.
31.
De Krijger RR, Aanstoot HJ, Kranenburg G, Reinhard M, Visser WJ, Bruining GJ: The midgestational human fetal pancreas contains cells co-expressing islet hormones. Dev Biol 1992;153:368–375.
32.
Lukinius A, Ericsson JL, Grimelius L, Korsgren O: Ultrastructural studies of the ontogeny of fetal human and porcine endocrine pancreas, with special reference to colocalization of the four major islet hormones. Dev Biol 1992;153:376–385.
33.
Furukawa M, Eto Y, Kojima I: Expression of immunoreactive activin A in fetal rat pancreas. Endocr J 1995;42:63–68.
34.
Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606–609.
35.
Offield MF, Jetton TL, Labosky PA, Ray M, Stein R, Magnuson MA, Hogan BL, Wright CV: PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.
36.
Scharfmann R, Czernichow P: Differentiation and growth of pancreatic beta cells. Diabetes Metab 1996;22:223–228.
37.
Matsuoka TA, Zhao L, Artner I, Jarrett HW, Friedman D, Means A, Stein R: Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol Cell Biol 2003;23:6049–6062.
38.
Artner I, Le Lay J, Hang Y, Elghazi L, Schisler JC, Henderson E, Sosa-Pineda B, Stein R: MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 2006;55:297–304.
39.
Kim YC, Kim SY, Mellado-Gil JM, Yadav H, Neidermyer W, Kamaraju AK, Rane SG: RB regulates pancreas development by stabilizing Pdx1. EMBO J 2011;30:1563–1576.
40.
Cerf ME: High fat diet modulation of glucose sensing in the beta-cell. Med Sci Monit 2007;13:RA12–17.
41.
Zhang W, Feng D, Li Y, Iida K, McGrath B, Cavener DR: PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab 2006;4:491–497.
42.
Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M, Handa H: MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J Biol Chem 2002;277:49903–49910.
43.
Aramata S, Han SI, Kataoka K: Roles and regulation of transcription factor mafA in islet beta-cells. Endocr J 2007;54:659–666.
44.
Wang J, Webb G, Cao Y, Steiner DF: Contrasting patterns of expression of transcription factors in pancreatic alpha and beta cells. Proc Natl Acad Sci USA 2003;100:12660–12665.
45.
Lu J, Herrera PL, Carreira C, Bonnavion R, Seigne C, Calender A, Bertolino P, Zhang CX: Alpha cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology 2010;138:1954–1965.
46.
Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL: Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010.
47.
Sangan CB, Tosh D: A new paradigm in cell therapy for diabetes: turning pancreatic alpha-cells into beta-cells. Bioessays 2010;32:881–884.
48.
Bramswig NC, Kaestner KH: Transcriptional regulation of alpha-cell differentiation. Diabetes Obes Metab 2011;13(suppl 1):13–20.
49.
Gosmain Y, Marthinet E, Cheyssac C, Guerardel A, Mamin A, Katz LS, Bouzakri K, Philippe J: Pax6 controls the expression of critical genes involved in pancreatic {alpha} cell differentiation and function. J Biol Chem 2010;285:33381–33393.
50.
Ambros V: The functions of animal microRNAs. Nature 2004;431:350–355.
51.
Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS: MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007;56:2938–2945.
52.
Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R: Specific control of pancreatic endocrine beta- and delta-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 2011;60:2861–2871.
53.
Piper K, Ball SG, Turnpenny LW, Brickwood S, Wilson DI, Hanley NA: Beta-cell differentiation during human development does not rely on nestin-positive precursors: implications for stem cell-derived replacement therapy. Diabetologia 2002;45:1045–1047.
54.
Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI, Hanley NA: Beta cell differentiation during early human pancreas development. J Endocrinol 2004;181:11–23.
55.
Falin LI: The development and cytodifferentiation of the islets of Langerhans in human embryos and foetuses. Acta Anat (Basel) 1967;68:147–168.
56.
Orci L, Perrelet A, Like AA: Fenestrae in the rough endoplasmic reticulum of the exocrine pancreatic cells. J Cell Biol 1972;55:245–249.
57.
Like AA, Orci L: Embryogenesis of the human pancreatic islets: a light and electron microscopic study. Diabetes 1972;21:511–534.
58.
Stefan Y, Grasso S, Perrelet A, Orci L: A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas. Diabetes 1983;32:293–301.
59.
Clark A, Grant AM: Quantitative morphology of endocrine cells in human fetal pancreas. Diabetologia 1983;25:31–35.
60.
Fukayama M, Ogawa M, Hayashi Y, Koike M: Development of human pancreas. Immunohistochemical study of fetal pancreatic secretory proteins. Differentiation 1986;31:127–133.
61.
Bocian-Sobkowska J, Zabel M, Wozniak W, Surdyk-Zasada J: Prenatal development of the human pancreatic islets. Immunocytochemical identification of insulin-, glucagon-, somatostatin- and pancreatic polypeptide-containing cells. Folia Histochem Cytobiol 1997;35:151–154.
62.
Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM, Jensen J, Hayek A, Hutton JC: Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 2008;51:285–297.
63.
Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P: Early pattern of differentiation in the human pancreas. Diabetes 2000;49:225–232.
64.
Meier JJ, Kohler CU, Alkhatib B, Sergi C, Junker T, Klein HH, Schmidt WE, Fritsch H: Beta-cell development and turnover during prenatal life in humans. Eur J Endocrinol 2010;162:559–568.
65.
Assan R, Boillot J: Pancreatic glucagon and glucagon-like material in tissues and plasma from human fetuses 6–26 weeks old. Pathol Biol (Paris) 1973;21:149–155.
66.
Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 2005;53:1087–1097.
67.
Chiang MK, Melton DA: Single-cell transcript analysis of pancreas development. Dev Cell 2003;4:383–393.
68.
Jeon J, Correa-Medina M, Ricordi C, Edlund H, Diez JA: Endocrine cell clustering during human pancreas development. J Histochem Cytochem 2009;57:811–824.
69.
Nicolini U, Hubinont C, Santolaya J, Fisk NM, Rodeck CH: Effects of fetal intravenous glucose challenge in normal and growth retarded fetuses. Horm Metab Res 1990;22:426–430.
70.
Kassem S, Bhandari S, Rodriguez-Bada P, Motaghedi R, Heyman M, Garcia-Gimeno MA, Cobo-Vuilleumier N, Sanz P, Maclaren NK, Rahier J, Glaser B, Cuesta-Munoz AL: Large islets, beta-cell proliferation, and a glucokinase mutation. N Engl J Med 2010;362:1348–1350.
71.
Rosero S, Bravo-Egana V, Jiang Z, Khuri S, Tsinoremas N, Klein D, Sabates E, Correa-Medina M, Ricordi C, Dominguez-Bendala J, Diez J, Pastori RL: MicroRNA signature of the human developing pancreas. BMC Genomics 2010;11:509.
72.
Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH: Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 1999;23:71–75.
73.
Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H: Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998;12:1763–1768.
74.
Stoffers DA, Ferrer J, Clarke WL, Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 1997;17:138–139.
75.
Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H: Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997;385:257–260.
76.
Shimomura H, Sanke T, Hanabusa T, Tsunoda K, Furuta H, Nanjo K: Nonsense mutation of islet-1 gene (Q310X) found in a type 2 diabetic patient with a strong family history. Diabetes 2000;49:1597–1600.
77.
Dubois CL, Shih HP, Seymour PA, Patel NA, Behrmann JM, Ngo V, Sander M: Sox9-haploinsufficiency causes glucose intolerance in mice. PloS One 2011;6:e23131.
78.
St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P: Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 1997;387:406–409.
79.
Ashery-Padan R, Zhou X, Marquardt T, Herrera P, Toube L, Berry A, Gruss P: Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes. Dev Biol 2004;269:479–488.
80.
Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P: The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997;386:399–402.
81.
Wang J, Elghazi L, Parker SE, Kizilocak H, Asano M, Sussel L, Sosa-Pineda B: The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol 2004;266:178–189.
82.
Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT: Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 2010;59:2326–2331.
83.
Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ: Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 1997;11:2323–2334.
84.
Itoh M, Takizawa Y, Hanai S, Okazaki S, Miyata R, Inoue T, Akashi T, Hayashi M, Goto Y: Partial loss of pancreas endocrine and exocrine cells of human ARX-null mutation: consideration of pancreas differentiation. Differentiation 2010;80:118–122.
85.
Collombat P, Hecksher-Sorensen J, Krull J, Berger J, Riedel D, Herrera PL, Serup P, Mansouri A: Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest 2007;117:961–970.
86.
Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, Hagenbuchle O, Wellauer PK: The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 1998;12:3752–3763.
87.
Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Kawaguchi M, Terao M, Doi R, Wright CV, Hoshino M, Chiba T, Uemoto S: Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes 2008;57:2421–2431.
88.
Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS: Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004;36:1301–1305.
89.
Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, Sieweke M, Stein R: MafB is required for islet beta cell maturation. Proc Natl Acad Sci USA 2007;104:3853–3858.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.