Hypogonadotrophic hypogonadism (HH) is characterized by delayed or absent pubertal development secondary to gonadotrophin deficiency. HH can result from mutations of the gonadotrophin-releasing hormone receptor 1, the gonadotrophin β-subunits, or various transcription factors involved in pituitary gland development. HH occurs in DAX1 mutations when associated with adrenal insufficiency (adrenal hypoplasia congenita), and is also linked with obesity in patients with mutations of leptin and its receptor, as well as mutations in prohormone convertase 1. Rarely, HH has resulted from kisspeptin receptor (GPR54) mutations, a gene implicated in the regulation of pubertal onset. When occurring with anosmia (a lack of sense of smell), HH is referred to as Kallmann’s syndrome (KS). Two KS-related loci are currently known: KAL1, encoding anosmin-1, responsible for X-linked KS, and KAL2, encoding the fibroblast growth factor receptor 1 (FGFR1), mutated in autosomal dominant KS. Anosmin-1 is an extracellular glycoprotein with some unique structural characteristics; it interacts with both urokinase-type plasminogen activator and FGFR1. It has previously been shown that anosmin-1 enhances FGFR1 signalling in a heparan sulphate-dependent manner, and proposed that anosmin-1 fine-tunes FGFR1 signalling during olfactory and GnRH neuronal development. Here, we review the known normosmic causes of HH, and discuss novel developmental and molecular mechanisms underlying KS; finally, we introduce three novel genes (NELF, PKR2, and CHD7) that may be associated with some phenotypic features of KS.

1.
Achermann JC, Weiss J, Lee EJ, Jameson JL: Inherited disorders of the gonadotropin hormones. Mol Cell Endocrinol 2001;179:89–96.
2.
Silveira LF, MacColl GS, Bouloux PM: Hypogonadotropic hypogonadism. Semin Reprod Med 2002;20:327–338.
3.
Schwanzel-Fukuda M, Pfaff DW: Origin of luteinizing hormone-releasing hormone neurons. Nature 1989;338:161–164.
4.
Wray S, Grant P, Gainer H: Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 1989;86:8132–8136.
5.
Gonzalez-Martinez D, Hu Y, Bouloux PM: Ontogeny of GnRH and olfactory neuronal systems in man: novel insights from the investigation of inherited forms of Kallmann’s syndrome. Front Neuroendocrinol 2004;25:108–130.
6.
Quinton R, Duke VM, Robertson A, Kirk JM, Matfin G, de Zoysa PA, Azcona C, MacColl GS, Jacobs HS, Conway GS, Besser M, Stanhope RG, Bouloux PM: Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization. Clin Endocrinol (Oxf) 2001;55:163–174.
7.
Weiss J, Adams E, Whitcomb RW, Crowley WF Jr, Jameson JL: Normal sequence of the gonadotropin-releasing hormone gene in patients with idiopathic hypogonadotropic hypogonadism. Biol Reprod 1991;45:743–747.
8.
De Roux N, Young J, Misrahi M, Schaison G, Milgrom E: Loss-of-function mutations of the GnRH receptor: a new cause of hypogonadotropic hypogonadism. J Pediatr Endocrinol Metab 1999;12(suppl 1):267–275.
9.
Beranova M, Oliveira LM, Bedecarrats GY, Schipani E, Vallejo M, Ammini AC, Quintos JB, Hall JE, Martin KA, Hayes FJ, Pitteloud N, Kaiser UB, Crowley WF, Jr, Seminara SB: Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2001;86:1580–1588.
10.
Layman LC, Lee EJ, Peak DB, Namnoum AB, Vu KV, van Lingen BL, Gray MR, McDonough PG, Reindollar RH, Jameson JL: Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone β-subunit gene. N Engl J Med 1997;337:607–611.
11.
Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL: Hypogonadism caused by a single amino acid substitution in the β-subunit of luteinizing hormone. N Engl J Med 1992;326:179–183.
12.
Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG: Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 1998;12:1691–1704.
13.
Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, Marcos E, Duriez B, Cacheux V, Moers A, Goossens M, Gruters A, Amselem S: Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 2000;25:182–186.
14.
Wu W, Cogan JD, Pfaffle RW, Dasen JS, Frisch H, O’Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA III, Rosenfeld MG: Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet 1998;18:147–149.
15.
Fluck C, Deladoey J, Rutishauser K, Eble A, Marti U, Wu W, Mullis PE: Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg→Cys at codon 120 (R120C). J Clin Endocrinol Metab 1998;83:3727–3734.
16.
Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Martensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC: Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 1998;19:125–133.
17.
Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, Cameron F, Hurst J, Woods K, Dunger D, Stanhope R, Forrest S, Robinson IC, Beddington RS: Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet 2001;10:39–45.
18.
Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W: Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 1994;372:672–676.
19.
Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER: An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994;372:635–641.
20.
Parker KL, Schimmer BP: Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 1997;18:361–377.
21.
Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL: A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 1999;22:125–126.
22.
Park SY, Meeks JJ, Raverot G, Pfaff LE, Weiss J, Hammer GD, Jameson JL: Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development 2005;132:2415–2423.
23.
Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD: A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998;18:213–215.
24.
Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B: A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401.
25.
Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O’Rahilly S: Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 1997;16:303–306.
26.
De Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E: Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003;100:10972–10976.
27.
Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH: The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614–1627.
28.
De Roux N, Acierno JS, Houang M, Derbois D, Matsuda F, Meysing AU, Pugeat M, Le Bouc Y, Crowley WFJ, Kelly P, Seminara S: A unique short 3′ duplication of the coding sequence of the GPR54 ligand identified in a large cohort of isolated hypogonadotropic hypogonadism patients. ENDO 2004, Endocrine Society’s 86th Annual Meeting, New Orleans 2004.
29.
Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M: The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001;276:34631–34636.
30.
Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA: Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005;102:1761–1766.
31.
Plant TM, Ramaswamy S, Dipietro MJ: Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 2006;147:1007–1013.
32.
Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR: Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab 2005;90:6609–6615.
33.
Seminara SB, Dipietro MJ, Ramaswamy S, Crowley WF Jr, Plant TM: Continuous human metastin 45-54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male rhesus monkey (Macaca mulatta): a finding with therapeutic implications. Endocrinology 2006;147:2122–2126.
34.
Maestre de San Juan A: Teratolagia: falta total de los nervios olfactorios con anosmia en un individuo en quien existia una atrofia congenita de los testiculos y miembro viril. El siglo medico, Madrid 1856, p 211.
35.
Kallmann FJ, Schönfeld WA, Barrera SE: The genetic aspects of primary eunuchoidism. Am J Ment Defic 1944;48:203–236.
36.
Hu Y, Tanriverdi F, MacColl GS, Bouloux PM: Kallmann’s syndrome: molecular pathogenesis. Int J Biochem Cell Biol 2003;35:1157–1162.
37.
Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pecheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel JC, Delemarre-van de Waal H, Goulet-Salmon B, Kottler ML, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Hardelin JP: Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 2003;33:463–465.
38.
Pitteloud N, Acierno JS Jr, Meysing AU, Dwyer AA, Hayes FJ, Crowley WF Jr: Reversible Kallmann syndrome, delayed puberty, and isolated anosmia occurring in a single family with a mutation in the fibroblast growth factor receptor 1 gene. J Clin Endocrinol Metab 2005;90:1317–1322.
39.
MacColl G, Bouloux P, Quinton R: Kallmann syndrome: adhesion, afferents, and anosmia. Neuron 2002;34:675–678.
40.
Graziadei PP, Monti Graziadei GA: Principles of organization of the vertebrate olfactory glomerulus: an hypothesis. Neuroscience 1986;19:1025–1035.
41.
Schwanzel-Fukuda M, Zheng LM, Bergen H, Weesner G, Pfaff DW: LHRH neurons: functions and development. Prog Brain Res 1992;93:189–201.
42.
Schwanzel-Fukuda M, Bick D, Pfaff DW: Luteinizing hormone-releasing hormone-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res 1989;6:311–326.
43.
Gonzalez-Martinez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM: Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci 2004;24:10384–10392.
44.
Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P: A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991;353:529–536.
45.
Legouis R, Hardelin JP, Levilliers J, Claverie JM, Compain S, Wunderle V, Millasseau P, Le Paslier D, Cohen D, Caterina D: The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 1991;67:423–435.
46.
Oliveira LM, Seminara SB, Beranova M, Hayes FJ, Valkenburgh SB, Schipani E, Costa EM, Latronico AC, Crowley WF Jr, Vallejo M: The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuroendocrine characteristics. J Clin Endocrinol Metab 2001;86:1532–1538.
47.
Matsuo T, Okamoto S, Izumi Y, Hosokawa A, Takegawa T, Fukui H, Tun Z, Honda K, Matoba R, Tatsumi K, Amino N: A novel mutation of the KAL1 gene in monozygotic twins with Kallmann syndrome. Eur J Endocrinol 2000;143:783–787.
48.
Rugarli EI, Ghezzi C, Valsecchi V, Ballabio A: The Kallmann syndrome gene product expressed in COS cells is cleaved on the cell surface to yield a diffusible component. Hum Mol Genet 1996;5:1109–1115.
49.
Lutz B, Kuratani S, Rugarli EI, Wawersik S, Wong C, Bieber FR, Ballabio A, Eichele G: Expression of the Kallmann syndrome gene in human fetal brain and in the manipulated chick embryo. Hum Mol Genet 1994;3:1717–1723.
50.
Duke VM, Winyard PJ, Thorogood P, Soothill P, Bouloux PM, Woolf AS: KAL, a gene mutated in Kallmann’s syndrome, is expressed in the first trimester of human development. Mol Cell Endocrinol 1995;110:73–79.
51.
Hu Y, Sun Z, Eaton JT, Bouloux PM, Perkins SJ: Extended and flexible domain solution structure of the extracellular matrix protein anosmin-1 by X-ray scattering, analytical ultracentrifugation and constrained modelling. J Mol Biol 2005;350:553–570.
52.
Hu Y, Gonzalez-Martinez D, Kim SH, Bouloux PM: Cross-talk of anosmin-1, the protein implicated in X-linked Kallmann’s syndrome, with heparan sulphate and urokinase-type plasminogen activator. Biochem J 2004;384:495–505.
53.
Soussi-Yanicostas N, de Castro F, Julliard AK, Perfettini I, Chedotal A, Petit C: Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 2002;109:217–228.
54.
Whitlock KE, Smith KM, Kim H, Harden MV: A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone cells in the zebrafish, Danio rerio. Development 2005;132:5491–5502.
55.
Okubo K, Sakai F, Lau EL, Yoshizaki G, Takeuchi Y, Naruse K, Aida K, Nagahama Y: Forebrain gonadotropin-releasing hormone neuronal development: insights from transgenic medaka and the relevance to x-linked Kallmann syndrome. Endocrinology 2006;147:1076–1084.
56.
Cariboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, Piva F, Rugarli EI, Maggi R: The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone-producing neurons. Hum Mol Genet 2004;13:2781–2791.
57.
Soussi-Yanicostas N, Faivre-Sarrailh C, Hardelin JP, Levilliers J, Rougon G, Petit C: Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J Cell Sci 1998;111:2953–2965.
58.
Van Vactor D, Wall DP, Johnson KG: Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol 2006;16:40–51.
59.
Bulow HE, Berry KL, Topper LH, Peles E, Hobert O: Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci USA 2002;99:6346–6351.
60.
Bulow HE, Hobert O: Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 2004;41:723–736.
61.
Guimond SE, Turnbull JE: Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr Biol 1999;9:1343–1346.
62.
Mohammadi M, Olsen SK, Ibrahimi OA: Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005;16:107–137.
63.
Schlessinger J: Signal transduction. Autoinhibition control. Science 2003;300:750–752.
64.
Hebert JM, Lin M, Partanen J, Rossant J, McConnell SK: FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 2003;130:1101–1111.
65.
Meyers EN, Lewandoski M, Martin GR: An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 1998;18:136–141.
66.
Britto JA, Evans RD, Hayward RD, Jones BM: Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF β genes are differentially expressed in sequential stages of human palatal shelf fusion. Cleft Palate Craniofac J 2002;39:332–340.
67.
Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI: Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol Endocrinol 2005;19:225–236.
68.
Gill JC, Tsai PS: Expression of a dominant negative FGF receptor in developing GNRH1 neurons disrupts axon outgrowth and targeting to the median eminence. Biol Reprod 2006;74:463–472.
69.
Mochizuki Y, Tsuda S, Kanetake H, Kanda S: Negative regulation of urokinase-type plasminogen activator production through FGF-2-mediated activation of phosphoinositide 3-kinase. Oncogene 2002;21:7027–7033.
70.
Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, Schoenmakers EF, Brunner HG, Veltman JA, van Kessel AG: Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004;36:955–957.
71.
Hall BD: Choanal atresia and associated multiple anomalies. J Pediatr 1979;95:395–398.
72.
Pagon RA, Graham JM Jr, Zonana J, Yong SL: Coloboma, congenital heart disease, and choanal atresia with multiple anomalies: CHARGE association. J Pediatr 1981;99:223–227.
73.
Chalouhi C, Faulcon P, Le Bihan C, Hertz-Pannier L, Bonfils P, Abadie V: Olfactory evaluation in children: application to the CHARGE syndrome. Pediatrics 2005;116:e81–e88.
74.
Klein VR, Friedman JM, Brookshire GS, Brown OE, Edman CD: Kallmann syndrome associated with choanal atresia. Clin Genet 1987;31:224–227.
75.
Coatesworth AP, Woodhead CJ: Conductive hearing loss associated with Kallmann’s syndrome. J Laryngol Otol 2002;116:125–126.
76.
Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS: Characterization of the CHD family of proteins. Proc Natl Acad Sci USA 1997;94:11472–11477.
77.
Miura K, Acierno JS Jr, Seminara SB: Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism. J Hum Genet 2004;49:265–268.
78.
Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y: Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci USA 2006;103:4140–4145.
79.
Ng KL, Li JD, Cheng MY, Leslie FM, Lee AG, Zhou QY: Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 2005;308:1923–1927.
80.
Albuisson J, Pecheux C, Carel JC, Lacombe D, Leheup B, Lapuzina P, Bouchard P, Legius E, Matthijs G, Wasniewska M, Delpech M, Young J, Hardelin JP, Dode C: Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2). Hum Mutat 2005;25:98–99.
81.
Sato N, Katsumata N, Kagami M, Hasegawa T, Hori N, Kawakita S, Minowada S, Shimotsuka A, Shishiba Y, Yokozawa M, Yasuda T, Nagasaki K, Hasegawa D, Hasegawa Y, Tachibana K, Naiki Y, Horikawa R, Tanaka T, Ogata T: Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J Clin Endocrinol Metab 2004;89:1079–1088.
82.
Sato N, Ohyama K, Fukami M, Okada M, Ogata T: Kallmann syndrome: somatic and germline mutations of the fibroblast growth factor receptor 1 gene in a mother and the son. J Clin Endocrinol Metab 2006;91:1415–1418.
83.
Sato N, Hasegawa T, Hori N, Fukami M, Yoshimura Y, Ogata T: Gonadotrophin therapy in Kallmann syndrome caused by heterozygous mutations of the gene for fibroblast growth factor receptor 1. Report of three families: case report. Hum Reprod 2005;20:2173–2178.
84.
Houk CP, Pitteloud N, Crowley WF, Lee PA: Autosomal dominant Kallmann syndrome and syndactyly caused by a novel heterozygote mutation in FGFR1. ENDO 2005, Endocrine Society’s 87th Annual Meeting, San Diego 2005.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.