Autoimmunity implies disturbances at several levels of the immune control. Self-tolerance and discrimination between self and non-self synergize to avoid the development of autoimmunity. Negative selection in the thymus, the transcription factor AIRE, CD4+CD25+ regulatory T cells, and dendritic cells cooperate to produce and maintain tolerance. Cytokines modulate deriving immune processes and influence the local micro-environment. Multiple mechanisms are involved in tolerance breakdown: genetic factors (major histocompatibility complex haplotypes, polymorphisms in the cytotoxic T lymphocyte antigen gene and epigenetic alterations), environmental factors (mainly infections), impaired apoptosis, and the emergence of autoreactive naive lymphocytes. These events may be involved in the pathogenesis of endocrine diseases at several levels.

1.
Sarvetnick N, Ohashi PS: Autoimmunity. Curr Opin Immunol 2003;15:647–650.
2.
Christen U, von Herrath MG: Initiation of autoimmunity. Curr Opin Immunol 2004;16:760–768.
3.
Ohashi PS: Negative selection and autoimmunity. Curr Opin Immunol 2003;15:668–676.
4.
Raman K, Mohan C: Genetic underpinnings of autoimmunity-lessons from studies in arthritis, diabetes, lupus and multiple sclerosis. Curr Opin Immunol 2003;15:651–659.
5.
Larsen CE, Alper CA: The genetics of HLA-associated disease. Curr Opin Immunol 2004;16:660–667.
6.
Shlomchik MJ, Cooke A, Weigert M: Autoimmunity. The genes and phenotypes of autoimmunity. Curr Opin Immunol 2004;16:738–740.
7.
Germain RN: T-cell development and the CD4-CD8 lineage decision. Nature 2002;2:309–322.
8.
Parel Y, Chizzolini C: CD4+CD8+ double positive (DP) cells in health and disease. Autoimmun Rev 2004;3:215–220.
9.
Kim MS, Polychronakos C: Immunogenetics of type 1 diabetes. Horm Res 2005;64:180–188.
10.
Eisenbarth GS: Immunogenetics/immunopathogenesis of type 1 diabetes. Ann NY Acad Sci 2003;1005:109–118.
11.
Melanitou E, Fain P, Eisenbarth GS: Genetics of type 1 A (immune mediated) diabetes. J Autoimmun 2003;21:93–98.
12.
Hamalainen AM, Knip M: Autoimmunity and familial risk of type 1 diabetes. Curr Diab Rep 2002;2:347–353.
13.
Lernmark B, Elding-Larsson H, Hansson G, Lindberg B, Lynch K, Sjoblad S: Parent responses to participation in genetic screening for diabetes risk. Pediatr Diabetes 2004;5:174–181.
14.
Alper CA, Dubey DP, Awdeh Z: A simple estimate of the general population frequency of the MHC susceptibility gene for autoimmune polygenic disease. Exp Clin Immunogenet 2000;17:138–147.
15.
Alper CA, Awdeh Z: Incomplete penetrance of MHC susceptibility genes: prospective analysis of polygenic MHC-determined traits. Tissue Antigens 2000;56:199–206.
16.
Kristiansen OP, Larsen ZM, Pociot F: CTLA4 in autoimmune diseases – a general susceptibility gene to autoimmunity? Genes Immun 2000;1:170–184.
17.
Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC: Association of the T-cell regulatory gene CTLA4 with the susceptibility to autoimmune disease. Nature 2003;423:506–511.
18.
Chistiakov DA, Turakulov RI: CTLA-4 and its role in autoimmune thyroid disease. J Mol Endocrinol 2003;31:21–36.
19.
Januchowski R, Prokop J, Jagodzinski P: Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus. J Appl Genet 2004;45:237–248.
20.
Singal R, Ginder GD: DNA methylation. Blood 1999;93:4059–4070.
21.
Yung R, Powers D, Johnson K, et al: Mechanisms of drug-induced lupus. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupus-like disease in syngenic recipients. J Clin Invest 1996;97:2866–2871.
22.
Gantner F, Hermann P, Nakashima K, Matsukawa S, Sakai K, Bacon KB: CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides. Eur J Immunol 2003;33:1576–1585.
23.
Lavie L, Kitova M, Maldener E, Meese E, Mayer J: CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 2005;79:876–883.
24.
Okahara G, Matsubara S, Oda T, Sugimoto J, Jinno Y, Kanaya F: Expression analyses of human endogenous retroviruses (HERVs): tissue-specific and developmental stage-dependent expression of HERVs. Genomics 2004;84:982–990.
25.
Ohashi P: Negative selection and autoimmunity. Curr Opin Immunol 2003;15:668–676.
26.
Heath VL, Moore NC, Parnell SM, Mason DW: Intrathymic expression of genes involved in organ specific autoimmune disease. J Autoimmun 1998;11:309–318.
27.
Thébault-Baumont K, Dubois-Laforgue D, Krief P, Briand JP, Halbout P, Vallon-Geoffroy K, Morin J, Laloux V, Lehuen A, Carel JC: Acceleration of type 1 diabetes mellitus in pro-insulin 2-deficient NOD mice. J Clin Invest 2003;111:851–857.
28.
Derbinski J, Schulte A, Kyewski B, Klein L: Promiscuous gene expression in medullary epithelial cells mirrors the peripheral self. Nat Immunol 2001;2:1032–1039.
29.
Gotter J, Brors B, Hergenhahn H, Kyewski B: Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 2004;199:155–166.
30.
Su MA, Anderson MS: Aire: an update. Curr Opin Immunol 2004;16:746–752.
31.
Bjorses P, Halonen M, Palvimo JJ, Kolmer M, Aaltonen J, Ellonen P, Perheentupa J, Ulmanen I, Peltonen L: Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am J Hum Genet 2000;66:378–392.
32.
Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC: Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003;4:350–354.
33.
Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B: Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 2005;1:33–45.
34.
Gillard GO, Farr AG: Contrasting models of promiscuous gene expression by thymic epithelium. J Exp Med 2005;1:15–19.
35.
Christen U, von Herrath MG: Induction, acceleration or prevention of autoimmunity by molecular mimicry. Mol Immunol 2004;40:1113–1120.
36.
Oldstone MB: Molecular mimicry and immune-mediated diseases. FASEB J 1998;12:1255–1265.
37.
Kersh GJ, Allen PM: Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J Exp Med 1996;184:1259–1268.
38.
Ford ML, Evavold BD: Degenerate recognition of T cell epitopes: impact of T cells receptor reserve and stability of peptide: MHC complexes. Mol Immunol 2004;40:1019–1025.
39.
Juedes AE, Rodrigo E, Togher L, Glimcher LH, von Herrath MG: T-bet controls autoaggressive CD8 lymphocyte responses in type 1 diabetes. J Exp Med 2004;199:1153–1162.
40.
Christen U, Edelmann KH, McGavern DB, Wolfe T, Coon B, Teague MK, Miller SD, Oldstone MB, von Herrath MG: A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 2004;114:290–298.
41.
von Herrath MG, Dockter J, Oldstone MB: How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1994;1:231–242.
42.
Panoutsakopoulou V: Analysis of the relationship between viral infection and autoimmune disease. Immunity 2001;15:137–147.
43.
Chen HD, Fraire AE, Joris I, Welsh RM, Selin LK: Specific history of heterologous virus infections determines anti-viral immunity and immunopathology in the lung. Am J Pathol 2003;163:1341–1355.
44.
Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N: Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998;4:781–785.
45.
Mena I, Fischer C, Gebhard JR, Perry CM, Harkins S, Whitton JL: Coxsackie virus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology. Virology 2000;271:276–288.
46.
Carl PL, Temple BR, Cohen PL: Most nuclear systemic autoantigens are extremely disordered proteins: implications for the etiology of systemic autoimmunity. Arthritis Res Ther 2005;7:1360–1374.
47.
Deshmukh US, Kannapell CC, Fu SM: Immune responses to small nuclear ribonuceloproteins: antigen-dependent distinct B cell epitope spreading patterns in mice immunized with recombinant polypeptides of small nuclear ribonucleoproteins. J Immunol 2002;169:5326–5332.
48.
Nagata S, Suda T: Fas and Fas ligand: lpr and gld mutations. Immunol Today 1995;16:39–43.
49.
Dianzani U, Chiocchetti A, Ramenghi U: Role of inherited defects decreasing Fas function in autoimmunity. Life Sci 2003;72:2803–2824.
50.
Fisher GH, Rosenberg FJ, Straus SE, et al: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995;81:935–946.
51.
Holzelova E, Vonarbourg C, Stolzenberg MC, Arkwright PD, Selz F, Prieru AM, Blanche S, Bartunkova J, Vilmer E, Fischer A, Le Deist F, Rieux-Lacaut F: Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med 2004;351:1409–1418.
52.
van der Burg M, de Groot R, Comans-Bitter WM, et al: Autoimmune lymphoproliferative syndrome (ALPS) in a child from consanguineous parents: a dominant or recessive disease? Pediatr Res 2000;47:336–343.
53.
Jackson CE, Fischer RE, Hsu AP: Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am J Hum Genet 1999;64:1002–1014.
54.
Rieux-Laucat F, Blachere S, Danielan S, et al: Lymphoproliferative syndrome with autoimmunity: a possible genetic basis for dominant expression of the clinical manifestations. Blood 1999;94:2575–2582.
55.
Comi C, Leone M, Bonissoni S, De Franco S, Bottarel F, Mezzatesta C, Chiocchetti A, Perla F, Monaco F, Dianzani U: Detective T cells Fas function in patient with multiple sclerosis. Neurology 2000;55:921–927.
56.
De Franco S, Bonissoni S, Cerutti F, Bona G, Bottarel F, Cadario F, Brusco A, Loffredo G, Rabbonì I, Corrias A, Pignata C, Ramenghi U, Dianzani U: Defective function of Fas in patients with type 1 diabetes associated with other autoimmune dieseas. Diabetes 2001;50:483–488.
57.
Ramenghi U, Bonissoni S, Migliaretti G, et al: Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 2000;95:3176–3182.
58.
Cline AM, Radic MZ: Apoptosis, subcellular particles, and autoimmunity. Clin Immunol 2004;112:175–182.
59.
Cocca BA, Cline AM, Radic MZ: Blebs and apoptotic bodies are B cell autoantigens. J Immunol 2002;169:159–166.
60.
Tran HB, Macardle PJ, Hiscock J: Anti-La/SSB antibodies transported across the placenta bind apoptotic cells in fetal organs targeted in neonatal lupus. Arthritis Rheum 2002;46:1572–1579.
61.
Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG: A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T-cell areas of mesenteric lymph nodes. J Exp Med 2000;191:435–444.
62.
Hugues S, Mougneau E, Ferlin W, Jeske D, Hofman P, Homann D, Beaudoin L, Schrike C, Von Herrat M, Lehuen A, Glaichenhaus N: Tolerance to islet antigens and prevention from diabetes induced by limited apoptosis of pancreatic β cells. Immunity 2002;16:169–181.
63.
Turley S, Poirot L, Hattori M, Benoist C, Mathis D: Physiological β cell death triggers priming of self-reactive T cells by dendritic cells in a type 1 diabetes model. J Exp Med 2003;198:1527–1537.
64.
Morgan BP, Walport MJ: Complement deficiency and disease. Immunol Today 1991;12:301–306.
65.
Botto M, Dell’Agnola C, Bygrave AE: Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998;19:56–59.
66.
Taylor PR, Carugati A, Fadok VA: A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp med 2000;192:359–366.
67.
Nauta AJ, Trouw LA, Daha MR, et al: Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 2002;32:1726–1736.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.