Hyperinsulinism in infancy (HI) is a condition of neonates and early childhood. For many years the pathophysiology of this potentially lethal disorder was unknown. Advances in the genetics, histopathology and molecular physiology of this disease have now provided insights into the causes of β-cell dysfunction and revealed levels of diversity far in excess of our previous knowledge. These include defects in ion channel subunit genes and mutations in several enzymes associated with β-cell metabolism and anaplerosis. In most cases, β-cell pathophysiology leads to an alteration in the function of ATP-sensitive K+ channels. This can manifest as ‘channelopathies’ of KATP channels through gene defects in ABCC8 and KCNJ11 (Ch.11p15); or as a result of ‘metabolopathies’ through defects in the genes encoding glucokinase (GCK, Ch.7p15–p13), glutamate dehydrogenase (GLUD1, Ch.10q23.3) and short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADHSC, Ch.4q22–q26). This review focuses upon the relationship between the causes of HI and therapeutic options.

1.
Stanley CA, Baker L: Hyperinsulinism in infancy: Diagnosis by demonstration of abnormal response to fasting hypoglycemia. Pediatrics 1976;57:702–711.
2.
Finegold DN, Stanley CA, Baker L: Glycaemic response to glucagon during fasting hypoglycemia: An aid in the diagnosis of hyperinsulinism. J Pediatr 1980;96:257–259.
3.
Aynsley-Green A, Polak JM, Bloom SR, Gough MH, Keeling J, Ashcroft SJH, Turner RC, Baum JD: Nesidioblastosis of the pancreas: Definition of the syndrome and the management of the severe neonatal hyperinsulinaemic hypoglycaemia. Arch Dis Child 1981;56:496–508.
4.
Leibowitz G, Glaser B, Higazi AA, Salameh M, Cerasi E, Landau H: Hyperinsulinemic hypoglycaemia of infancy (nesidioblastosis) in clinical remission: High incidence of diabetes mellitus and persistent β-cell dysfunction at long-term follow-up. J Clin Endocrinol Metab 1995;80:386–392.
5.
Al-Rabeeah A, al-Ashwal A, al-Herbish A, al-Jurayyan N, Sakati N, Abobakr A: Persistent hyperinsulinemic hypoglycemia of infancy: Experience with 28 cases. J Pediatr Surg 1995;30:1119–1121.
6.
Meissner T, Brune W, Mayatepek E: Persistent hyperinsulinaemic hypoglycaemia of infancy: Therapy, clinical outcome and mutational analysis. Eur J Pediatr 1997;156:754–757.
7.
Cade A, Walters M, Puntis JW, Arthur RJ, Stringer MD: Pancreatic exocrine and endocrine function after pancreatectomy for persistent hyperinsulinaemic hypoglycaemia of infancy. Arch Dis Child 1998;79:435–439.
8.
Aynsley-Green A, Hussain K, Hall J, Saudubray JM, Nihoul-Fékété C, De Lonlay-Debeney P, Brunelle F, Otonkoski T, Thornton P, Lindley JK: The practical management of hyperinsulinism in infancy. Arch Dis Child 2000;82:F98–F107.
9.
Mahachoklertwattana P, Suprasongsin C, Teeraratkul S, Preeyasombat C: Persistent hyperinsulinaemic hypoglycemia of infancy: Long-term outcome following subtotal pancreatectomy. J Pediatr Endocrinol Metab 2000;13:37–44.
10.
Menni F, de Lonlay P, Sevin C, Touati G, Peigne C, Barbier, V, Nihoul-Fékété C, Saudubray JM, Robert JJ: Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics 2001;107:476–479.
11.
Tyrrell VJ, Ambler GR, Yeow WH, Cowell CT, Silink M: Ten years’ experience of persistent hyperinsulinaemic hypoglycaemia of infancy. J Paediatr Child Health 2001;37:483–488.
12.
Rother KI, Matsumoto JMS, Rasmussen NH, Schwenk WF: Subtotal pancreatectomy for hypoglycemia due to congenital hyperinsulinism: Long-term follow-up of neurodevelopmental and pancreatic function. Pediatr Diabetes 2001;2:115–122.
13.
Stanley C: Advances in diagnosis and treatment of hyperinsulinism in infants and children. J Clin Endocrinol Metab 2002;87:4857–4859.
14.
Christesen HB, Feilberg-Jorgensen N, Jacobsen BB: Pancreatic β-cell stimulation tests in transient and persistent congenital hyperinsulinism. Acta Paediatr 2001;90:1116–1120.
15.
Clark W, O’Donovan D: Transient hyperinsulinism in an asphyxiated newborn infant with hypoglycemia. Am J Perinatol 2001;18:175–178.
16.
Parviainen AM, Puolakka J, Kirkinen P: Antepartum findings and obstetric aspects in pregnancies followed by neonatal persistent hyperinsulinemic hypoglycemia. Am J Perinatol 2002;19:163–168.
17.
Dunne MJ: Ions, genes and insulin release: From basic science to clinical disease. Diabet Med 2000;17:91–104.
18.
Henquin JC: Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000;49:1751–1760.
19.
Aizawa T, Komatsu M, Asanuma N, Sato Y, Sharp GWG: Glucose action ‘beyond ionic events’ in the pancreatic β-cell. Trends Pharmacol Sci 1998;19:496–499.
20.
Komatsu M, Aizawa T, Yokokawa N, Sato Y, Takasu N, Yamada T: Mastoparan-induced hormone release from rat pancreatic islets. Endocrinology 1992;30:221–228.
21.
Gembal M, Gilon P, Henquin JC: Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 1992;89:1288–1295.
22.
Best L, Yates AP, Tomlinson S: Stimulation of insulin secretion by glucose in the absence of diminished (86Rb+) permeability. Biochem Pharmacol 1992;43:2483–2485.
23.
Straub SG, James RFL, Dunne MJ, Sharp GWG: Glucose activates both KATP channel-dependent and KATP channel-independent signalling pathways in human islets. Diabetes 1998;47:758–764.
24.
Straub SG, James RFL, Dunne MJ, Sharp GWG: Glucose augmentation of mastoparan-stimulated insulin secretion in rat and human pancreatic islets. Diabetes 1998;47:1053–1057.
25.
Yajima H, Komatsu M, Schermerhorn T, Aizawa T, Kaneko T, Nagai M, Sharp GWG, Hashizume K: cAMP enhances insulin secretion by an action on the ATP-sensitive K+ channel-independent pathway of glucose signalling in rat pancreatic islets. Diabetes 1999;48:1006–1012.
26.
Melloul D, Ben-Neriah Y, Cerasi E: Glucose modulates the binding of an islet-specific factor to a conserved sequence within the rat I and the human insulin promoters. Proc Natl Acad Sci USA 1993;90:3865–3869.
27.
Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606–609.
28.
Macfarlane WM, Cragg H, Docherty HM, Read ML, James RFL, Aynsley-Green A, Docherty K: Impaired expression of transcription factor IUF1 in a cell line derived from a patient with persistent hyperinsulinaemic hypoglycaemia of infancy (nesidioblastosis). FEBS Lett 1997;413:304–308.
29.
Sund NJ, Vatamaniuk MZ, Casey M, Ang SL, Magnuson MA, Stoffers DA, Matschinsky FM, Kaestner KH: Tissue-specific deletion of Foxa2 in pancreatic β cells results in hyperinsulinemic hypoglycemia. Genes Dev 2001;15:1706–1715.
30.
Sturgess NC, Ashford ML, Cook DL, Hales CN: The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 1985;ii:474–475.
31.
Dabrowski M, Wahl P, Holmes WE, Ashcroft FM: Effect of repaglinide on cloned β cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia 2001;44:747–756.
32.
Hu S: Interaction of nateglinide with KATP channels in β-cells underlies its unique insulinotropic action. Eur J Pharmacol 2002;442:163–171.
33.
Dunne MJ, Petersen OH: Potassium selective ion channels in insulin-secreting cells: Physiology, pharmacology and their role in stimulus secretion coupling. Biochim Biophy Acta 1991;1071:67–82.
34.
Schwanstecher C, Meyer U, Schwanstecher M: Kir6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K+ channels. Diabetes 2002;51:875–879.
35.
Ashcroft FM, Gribble FM: Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 1998;21:288–294.
36.
Aguilar-Bryan L, Clement JP 4th, Gonzalez G, Kunjilwar K, Babenko A, Bryan J: Toward understanding the assembly and structure of KATP channels. Physiol Rev 1998;78:227–245.
37.
Aguilar-Bryan L, Nichols CG, Wechsler SW, Clemenet JP, Boyd AE, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA: Cloning of the β-cell high-affinity sulphonylurea receptor: A regulator of insulin secretion. Science 1995;268:423–426.
38.
Tusnady GE, Bakos E, Varadi A, Sarkadi B: Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. FEBS Lett 1997;402:1–3.
39.
Inagaki N, Gonoi T, Clement JP 4th, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J: Reconstitution of IKATP: An inward rectifier subunit plus the sulphonylurea receptor. Science 1995;270:1166–1170.
40.
Inagaki N, Gonoi T, Clement JP 4th, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S: A family of sulphonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1995;16:1011–1017.
41.
Sakura H, Ämmälä C, Smith PA, Gribble FM, Ashcroft FM: Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel expressed in pancreatic β-cells, brain, heart and skeletal muscle. FEBS Lett 1995;377:338–344.
42.
Clement JP 4th, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J: Association and stoichiometry of KATP channel subunits. Neuron 1997;18:827–838.
43.
Shyng SL, Nichols CG: Octameric stoichiometry of the KATP channel complex. J Gen Phys 1997;110:655–664.
44.
Shyng SL, Cukras CA, Harwood J, Nichols CG: Structural determinants of PIP2 regulation of inward rectifier K(ATP) channels. J Gen Physiol 2000;116:599–608.
45.
Drain P, Li L, Wang J: KATP channels channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc Natl Acad Sci USA 1998;95:13953–13958.
46.
Li L, Wang J, Drain P: The I182 region of K(ir)6.2 is closely associated with ligand binding in K(ATP) channel inhibition by ATP. Biophys J 2000;79:841–852.
47.
Shyng S, Ferrigni T, Nichols CG: Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit. J Gen Physiol 1997;110:141–153.
48.
Trapp S, Tucker SJ, Ashcroft FM: Activation and inhibition of KATP currents by guanine nucleotides is mediated by different channel subunits. Proc Natl Acad Sci USA 1997;94:8872–8877.
49.
Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM: Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 1997;387:179–183.
50.
Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM: Molecular determinants of KATP channels channel inhibition by ATP. EMBO J 1998;17:3290–3296.
51.
Ueda K, Komine J, Matsuo M, Seino S, Amachi T: Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc Natl Acad Sci USA 1999;96:1268–1272.
52.
Lebrun P, Antoine MH, Ouedraogo R, Dunne MJ, Kane C, Hermann A, Herchuelz A, Masereel PB, Delarge J, de Tullio R, Pirotte B: Activation of ATP-dependent K+ channels and inhibition of insulin release: Effect of BPDZ-62. J Pharmacol Exp Ther 1996;277;156–162.
53.
Dunne MJ: Effects of pinacidil, RP 49356 and nicorandil on ATP-sensitive potassium channels in insulin-secreting cells. Br J Pharmacol 1990;99:487–492.
54.
Becker B, Antoine MH, Nguyen QA, Rigo B, Cosgrove KE, Barnes PD, Dunne MJ, Pirotte B, Lebrun P: Synthesis and characterization of a quinolinonic compound activating ATP-sensitive K+ channels in endocrine and smooth muscle tissues. Br J Pharmacol 2001;134:375–385.
55.
Boverie S, Antoine MH, de Tullio P, Somers F, Becker B, Sebille S, Lebrun P, Pirotte B: Effect on insulin release of compounds structurally related to the potassium-channel opener 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide (BPDZ 73): Introduction of heteroatoms on the 3-alkylamino side chain of the benzothiadiazine 1,1-dioxide ring. J Pharm Pharmacol 2001;53:973–980.
56.
Lawson K, Dunne MJ: Peripheral channelopathies as targets for potassium channel openers. Expert Opin Investig Drugs 2001;10:1345–1359.
57.
Cosgrove KE, Antoine MH, Lee AT, Barnes PD, de Tullio P, Clayton P, McCloy R, De Lonlay P, Nihoul-Fékété C, Robert JJ, Saudubray JM, Rahier J, Lindley KJ, Hussain K, Aynsley-Green A, Pirotte B, Lebrun P, Dunne MJ: BPDZ 154 activates adenosine 5′-triphosphate-sensitive potassium channels: In vitro studies using rodent insulin-secreting cells and islets isolated from patients with hyperinsulinism. J Clin Endocrinol Metab. 2002;87:4860–4868.
58.
Dabrowski M, Ashcroft FM, Ashfield R, Lebrun P, Pirotte B, Egebjerg J, Bondo-Hansen J, Wahl P: The novel diazoxide analog 3-isopropylamino-7-methoxy-4H-1,2,4-benzothiadiazine 1,1-dioxide is a selective Kir6.2/SUR1 channel opener. Diabetes 2002;51:1896–1906.
59.
Nguyen QA, Antoine MH, Ouedraogo R, Hermann M, Sergooris J, Pirotte B, Masereel B, Lebrun P: In vitro and in vivo effects of new insulin releasing agents. Biochem Pharmacol 2002;63:515–521.
60.
Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M: Identification of the potassium channel opener site on sulfonylurea receptors. J Biol Chem 1999;274:28079–28082.
61.
Zerangue N, Schwappach B, Jan YN, Jan LY: A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 1999;22:537–548.
62.
Sharma N, Crane A, Clement JP 4th, Gonzalez G, Babenko AP, Bryan J, Aguilar-Bryan L: The C terminus of SUR1 is required for trafficking of KATP channels. J Biol Chem 1999;274:20628–20632.
63.
Taschenberger G, Mougey A, Shen S, Lester LB, LaFranchi S, Shyng SL: Identification of a familial hyperinsulinism-causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels. J Biol Chem 2002;277:17139–17146.
64.
Conti LR, Radeke CM, Vandenberg CA: Membrane targeting of ATP-sensitive potassium channel effects of glycosylation on surface expression. J Biol Chem 2002;277:25416–25422.
65.
Glaser B, Landau H, Permutt MA: Neonatal hyperinsulinism. Trends Endocrinol Metab 1999;10:55–61.
66.
Kaiser N, Corcos AP, Tur-Sinai A, Ariav Y, Glaser B, Landau H, Cerasi E: Regulation of insulin release in persistent hyperinsulinaemic hypoglycaemia of infancy studied in long-term culture of pancreatic tissue. Diabetologia 1990;33:482–488.
67.
Otonkoski T, Andersson S, Simell O: Somatostatin regulation of β-cell function in the normal human fetuses and in neonates with persistent hyperinsulinemic hypoglycemia. J Clin Endocrinol Metab 1993;76:184–188.
68.
Kane C, Shepherd RM, Squires PE, Johnson PR, James RF, Milla PJ, Aynsley-Green A, Lindley KJ, Dunne MJ: Loss of functional KATP channels in pancreatic β-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat Med 1996;2:1344–1347.
69.
Kane C, Lindley KJ, Johnson PR, James RF, Milla PJ, Aynsley-Green A, Dunne MJ: Therapy for persistent hyperinsulinemic hypoglycemia of infancy. Understanding the responsiveness of β-cells to diazoxide and somatostatin. J Clin Invest 1997;100:1888–1893.
70.
Lindley KJ, Dunne MJ, Kane C, Shepherd RM, Squires PE, James RFL, Johnson PRV, Eckhart S, Wakeling E, Dattani M, Milla PJ, Aynsley-Green A: Ionic control of β-cell function in nesidioblastosis. A possible therapeutic role for calcium channel blockade? Arch Dis Child 1996;74:373–378.
71.
Dunne MJ, Kane C, Shepherd RM, Sanchez JA, James RF, Johnson PR, Aynsley-Green A, Lu S, Clement JP 4th, Lindley KJ, Seino S, Aguilar-Bryan L: Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N Engl J Med 1997;336:703–706.
72.
Abernethy LJ, Davidson CD, Lamont GL, Shepherd RM, Dunne MJ: Intra-arterial calcium stimulation in the investigation of hyperinsulinaemic hypoglycaemia. Arch Dis Child 1998;78:359–363.
73.
Panesar NS, Poon CW, Liew CT, Wong GW, Hjelm NM: Histochemical, clinical and in vitro β-cell responses in a neonate with persistent hyperinsulinaemic hypoglycaemia of infancy. Arch Dis Child 1998;79:F141–F144.
74.
Otonkoski T, Ämmälä C, Huopio H, Cote GJ, Chapman J, Cosgrove K, Ashfield R, Huang E, Komulainen J, Ashcroft FM, Dunne MJ, Kere J, Thomas PM: A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. Diabetes 1999;48:408–415.
75.
Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shepherd RM, Barnes PD, O’Brien RE, Farndon PA, Sowden J, Liu XZ, Scanlan MJ, Malcolm S, Dunne MJ, Aynsley-Green A, Glaser B: A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 2000;1:56–60.
76.
Straub SG, Cosgrove KE, Ämmälä C, Shepherd RM, O’Brien RE, Barnes PD, Kuchinski N, Chapman JC, Schaeppi M, Glaser B, Lindley KJ, Sharp GW, Aynsley-Green A, Dunne MJ: Hyperinsulinism of infancy: The regulated release of insulin by KATP channel-independent pathways. Diabetes 2001;50:329–339.
77.
Glaser B, Thornton PS, Otonkoski T, Junien C: The genetics of neonatal hyperinsulinism. Arch Dis Child 2000;82:79–86.
78.
Ramadan DG, Badawi MH, Zaki M, el Mazidi Z, Ismail EA, el Anzi H: Persistent hyperinsulinaemic hypoglycaemia of infancy (nesidioblastosis): A report from Kuwait. Ann Trop Paediatr 1999;19:55–59.
79.
Glaser B, Chiu KC, Anker R, Nestorowicz A, Landau H, Ben-Bassat H, Shlomai Z, Kaiser N, Thornton PS, Stanley CA: Familial hyperinsulinism maps to chromosome 11p14–151, 30 cM centromeric to the insulin gene. Nat Genet 1994;7:185–188.
80.
Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, Aguilar-Bryan L, Gagel RF, Bryan J: Mutations of the sulphonylurea receptor gene in familial persistent hyperinsulinemic hypoglycaemia of infancy. Science 1995;268:426–429.
81.
Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko HL, Rahier J, Vauhkonen I, Kere J, Laakso M, Ashcroft F, Otonkoski T: Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 2000;106:897–906.
82.
De Lonlay P, Fournet JC, Rahier J, Gross-Morand MS, Poggi-Travert F, Foussier V, Bonnefont JP, Brusset MC, Brunelle F, Robert JJ, Nihoul-Fékété C, Saudubray JM, Junien C: Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 1997;100:802–807.
83.
Verkarre V, Fournet JC, de Lonlay P, Gross-Morand MS, Devillers M, Rahier J, Brunelle F, Robert JJ, Nihoul-Fékété C, Saudubray JM, Junien C: Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest 1998;102:1286–1291.
84.
Glaser B, Ryan F, Donath M, Landau H, Stanley CA, Baker L, Barton DE, Thornton PS: Hyperinsulinism caused by paternal-specific inheritance of a recessive mutation in the sulfonylurea-receptor gene. Diabetes 1999;48:1652–1657.
85.
De Lonlay P, Poggi-Travert F, Fournet JC, Sempoux C, Dionisi Vici C, Brunelle F, Touati G, Rahier J, Junien C, Nihoul-Fékété C, Robert JJ, Saudubray JM: Clinical features of 52 neonates with hyperinsulinism. N Engl J Med 1999;340:1169–1175.
86.
Fournet JC, Mayaud C, de Lonlay P, Gross-Morand MS, Verkarre V, Castanet M, Devillers M, Rahier J, Brunelle F, Robert JJ, Nihoul-Fékété C, Saudubray JM, Junien C: Unbalanced expression of 11p15 imprinted genes in focal forms of congenital hyperinsulinism: Association with a reduction to homozygosity of a mutation in ABCC8 or KCNJ11. Am J Pathol 2001;158:2177–2184.
87.
De Lonlay P, Fournet JC, Touati G, Groos MS, Martin D, Sevin C, Delagne V, Mayaud C, Chigot V, Sempoux C, Brusset MC, Laborde K, Bellane-Chantelot C, Vassault A, Rahier J, Junien C, Brunelle F, Nihoul-Fékété C, Saudubray JM, Robert JJ: Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. Eur J Pediatr 2002;161:37–48.
88.
Sempoux C, Guiot Y, Rahier J: The focal form of persistent hyperinsulinaemic hypoglycaemia of infancy. Diabetes 2001;50:S182–S183.
89.
Cretolle C, Fekete CN, Jan D, Nassogne MC, Saudubray JM, Brunelle F, Rahier J: Partial elective pancreatectomy is curative in focal form of permanent hyperinsulinemic hypoglycaemia in infancy: A report of 45 cases from 1983 to 2000. J Pediatr Surg 2002;37:1 55–58.
90.
Rahier J, Sempoux C, Fournet JC, Poggi F, Brunelle F, Nihoul-Fékété C, Saudubray JM, Jaubert F: Partial or near-total pancreatectomy for persistent neonatal hyperinsulinaemic hypoglycaemia: The pathologist’s role. Histopathology 1998;32:15–19.
91.
Rahier J, Guiot Y, Sempoux C: Persistent hyperinsulinaemic hypoglycaemia of infancy: A heterogeneous syndrome unrelated to nesidioblastosis. Arch Dis Child Fetal Neonatal Ed 2000;82:F108–F112.
92.
Ferry RJ Jr, Kelly A, Grimberg A, Koo-McCoy S, Shapiro MJ, Fellows KE, Glaser B, Aguilar-Bryan L, Stafford DE, Stanley CA: Calcium-stimulated insulin secretion in diffuse and focal forms of congenital hyperinsulinism. J Pediatr 2000;137:239–246.
93.
Chigot V, De Lonlay P, Nassogne MC, Laborde K, Delagne V, Fournet JC, Nihoul-Fékété C, Saudubray JM, Brunelle F: Pancreatic arterial calcium stimulation in the diagnosis and localisation of persistent hyperinsulinemic hypoglycaemia of infancy. Pediatr Radiol 2001;31:650–655.
94.
Grimberg A, Ferry RJ Jr, Kelly A, Koo-McCoy S, Polonsky K, Glaser B, Permutt MA, Aguilar-Bryan L, Stafford D, Thornton PS, Baker L, Stanley CA: Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 2001;50:322–328.
95.
Nestorowicz A, Glaser B, Wilson BA, Shyng SL, Nichols CG, Stanley CA, Thornton PS, Permutt MA: Genetic heterogeneity in familial hyperinsulinism. Hum Mol Genet 1998;7:1119–1128.
96.
Someya T, Miki T, Sugihara S, Minagawa M, Yasuda T, Kohno Y, Seino S: Characterization of genes encoding the pancreatic β-cell ATP-sensitive K+ channel in persistent hyperinsulinemic hypoglycemia of infancy in Japanese patients. Endocr J 2000;47:715–722.
97.
Cartier EA, Conti LR, Vandenberg CA, Shyng SL: Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci USA 2001;98:2882–2887.
98.
Partridge CJ, Beech DJ, Sivaprasadarao A: Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J Biol Chem 2001;276:35947–35952.
99.
Tanizawa Y, Nakai K, Sasaki T, Anno T, Ohta Y, Inoue H, Matsuo K, Koga M, Furukawa S, Oka Y: Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: Identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells over expressing the mutant glutamate dehydrogenase. Diabetes 2002;51:712–717.
100.
Huopio H, Vauhkonen I, Komulainen J, Niskanen L, Otonkoski T, Laakso M: Carriers of an inactivating β-cell ATP-sensitive K+ channel mutation have normal glucose tolerance and insulin sensitivity and appropriate insulin secretion. Diabetes Care 2002;25:101–106.
101.
Shyng SL, Ferrigni T, Shepard JB, Nestorowicz A, Glaser B, Permutt MA, Nichols CG: Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 1998;47:1145–1151.
102.
Tanizawa Y, Matsuda K, Matsuo M, Ohta Y, Ochi N, Adachi M, Koga M, Mizuno S, Kajita M, Tanaka Y, Tachibana K, Inoue H, Furukawa S, Amachi T, Ueda K, Oka Y: Genetic analysis of Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy: Nucleotide-binding fold-2 mutation impairs cooperative binding of adenine nucleotides to sulfonylurea receptor 1. Diabetes 2000;49:114–120.
103.
Matsuo M, Trapp S, Tanizawa Y, Kioka N, Amachi T, Oka Y, Ashcroft FM, Ueda K: Functional analysis of a mutant sulfonylurea receptor, SUR1–R1420C, that is responsible for persistent hyperinsulinemic hypoglycemia of infancy. J Biol Chem 2000;275:41184–41191.
104.
Nestorowicz A, Wilson BA, Schoor KP, Inoue H, Glaser B, Landau H, Stanley CA, Thornton PS, Clement JP 4th, Bryan J, Aguilar-Bryan L, Permutt MA: Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 1996;5:1813–1822.
105.
Dekel B, Lubin D, Modan-Moses D, Quint J, Glaser B, Meyerovitch J: Compound heterozygosity for the common sulfonylurea receptor mutations can cause mild diazoxide-sensitive hyperinsulinism. Clin Pediatr 2002;41:183–186.
106.
Nestorowicz A, Inagaki N, Gonoi T, Schoor KP, Wilson BA, Glaser B, Landau H, Stanley CA, Thornton PS, Seino S, Permutt MA: A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997;46:1743–1748.
107.
Thomas P, Ye Y, Lightner E: Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 1996;5:1809–1812.
108.
Shepherd RM, Cosgrove KE, O’Brien RE, Barnes PD, Ämmälä C, Dunne MJ: Hyperinsulinism of infancy: Towards an understanding of unregulated insulin release. Arch Dis Child 2000;82:F87–F97.
109.
Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, Stanley CA, Thornton PS, Permutt MA, Matschinsky FM, Herold KC: Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 1998;338:226–230.
110.
Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M: Hyperinsulinism and hyperammonaemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 1998;338:1352–1357.
111.
Service FJ, Natt N, Thompson GB, van Heerden JA, Andrews JC, Lorenz E, Terzic A, Lloyd RV: Non-insulinoma pancreatogenous hypoglycaemia: A novel syndrome of hyperinsulinemic hypoglycaemia in adults independent of mutations in Kir6.2 and SUR1 genes. J Clin Endocrinol Metab 1999;84:1582–1589.
112.
Meissner T, Otonkoski T, Feneberg R, Beinbrech B, Apostolidou S, Sipila I, Schaefer F, Mayatepek E: Exercise-induced hypoglycaemic hyperinsulinism. Arch Dis Child 2001;84:254–257.
113.
Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, Kere J, Sipila I: Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 2003;52:199–204.
114.
Kukuvitis A, Deal C, Arbour L, Polychronakos C: An autosomal dominant form of familial persistent hyperinsulinemic hypoglycemia of infancy, not linked to the sulfonylurea receptor locus. J Clin Endocrinol Metab 1997;82:1192–1194.
115.
Molven A, Rishaug U, Matre GE, Njolstad PR, Sovik O: Hunting for a hypoglycemia gene: Severe neonatal hypoglycemia in a consanguineous family. Am J Med Genet 2002;113:40–46.
116.
Yorifuji T, Muroi J, Uematsu A, Hiramatsu H, Momoi T: Hyperinsulinism-hyperammonaemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum Genet 1999;104:476–479.
117.
Kitaura J, Miki Y, Kato H, Sakakihara Y, Yanagisawa M: Hyperinsulinaemic hypoglycaemia associated with persistent hyperammonaemia. Eur J Pediatr 1999;158:410–413.
118.
Kelly A, Stanley CA: Disorders of glutamate metabolism. Ment Retard Dev Disabil Res Rev 2001;7:287–295.
119.
MacMullen C, Fang J, Hsu BY, Kelly A, de Lonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA: Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine trisphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 2001;86:1782–1787.
120.
Fang J, Hsu BY, MacMullen CM, Poncz M, Smith TJ, Stanley CA: Expression, purification and characterization of human glutamate dehydrogenase allosteric regulatory mutations. Biochem J 2002;363:81–87.
121.
Kelly A, Li C, Gao Z, Stanley CA, Matschinsky FM: Glutaminolysis and insulin secretion: From bedside to bench and back. Diabetes 2002;51:S421–S426.
122.
Cochrane WA, Payne WW, Simpkiss MJ, Woolf LI: Familial hypoglycemia precipitated by amino acids. J Clin Invest 1955;35:411–422.
123.
DiGeorge AM, Auerbach VH: Leucine induced hypoglycemia: A review and speculations. Am J Med Sci 1960;99:792–801.
124.
Mabry CC, DiGeorge AM, Auerbach VH: Leucine-induced hypoglycemia: Clinical observations and diagnostic considerations. J Pediatr 1960;57:526–538.
125.
Grant DB: Serum insulin changes following administration of L-leucine to children. Arch Dis Child 1967;43:69–77.
126.
Kelly A, Ng D, Ferry RJ Jr, Grimberg A, Koo-McCoy S, Thornton PS, Stanley CA: Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab 2001;86:3724–3728.
127.
Froguel P, Velho G: Molecular genetics of maturity-onset diabetes of the young. Trends Endocrinol Metab 1999;10:142–146.
128.
Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE: Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J Clin Invest 2001;108:457–465.
129.
Ishihara H, Wang H, Drewes LR, Wollheim CB: Over-expression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in β-cells. J Clin Invest 104:1621–1629.
130.
Combs J, Grunt J, Brandt I: New syndrome of neonatal hypoglycaemia association with visceromegaly, macroglossia, microcephaly and abnormal umbilicus. N Engl J Med 1966;275:236–243.
131.
Weng E, Mortier G, Graham J: Beckwith-Wiedemann syndrome. Clin Pediatr (Phila) 1995;34:317–326.
132.
De Baun MR, Niemitz EL, Feinberg AP: Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 2003;72:156–160.
133.
Goltin R: Diazoxide therapy in the syndrome of Beckwith-Wiedemann-Coombs. J Pediatr 1973;83:342–343.
134.
Roe TF, Kershnar AK, Weitzman JJ, Madrigel LS: Beckwith’s syndrome with extreme organ hyperplasia. Pediatrics 1973;52:372–381.
135.
Schiff D, Colle E, Wells D, Stern L: Metabolic aspects of the Beckwith-Wiedemann syndrome. J Pediatr 1973;82:258–262.
136.
Moncrieff M, Lacey K, Malleson P: Management of prolonged hypoglycaemia in Beckwith’s syndrome. Postgrad Med J 1997;53:159–161.
137.
Martinez Y, Martinez R: Clinical features in the Wiedemann-Beckwith syndrome. Clin Genet 1996;50:272–274.
138.
Elliott M, Bayly R, Cole T, Temple IK, Maher ER: Clinical features and natural history of Beckwith-Wiedemann syndrome: Presentation of 74 new cases. Clin Genet 1994;46:168–174.
139.
Gerver WJ, Menheere PP, Schaap C, Degraeuwe P: The effects of a somatostatin analogue on the metabolism of an infant with Beckwith-Wiedemann syndrome and hyperinsulinaemic hypoglycaemia. Eur J Pediatr 1991;150:634–637.
140.
Meissner T, Rabl W, Mohnike K, Scholl S, Santer R, Mayatepek E: Hyperinsulinism in syndromal disorders. Acta Paediatr 2001;90:856–859.
141.
Li M, Squire JA, Weksberg R: Molecular genetics of Wiedemann-Beckwith syndrome. Am J Med Genet 1998;79:253–259.
142.
Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, McMorrow L, Loew T, Kraus W, Gerald W, Tycko B: Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet 1994;7:440–447.
143.
Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP: Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet 1994;7:433–439.
144.
Horike S, Mitsuya K, Meguro M, Kotobuki N, Kashiwagi A, Notsu T, Schulz TC, Shirayoshi Y, Oshimura M: Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 2000;9:2075–2083.
145.
Cleary MA, van Raamsdonk CD, Levorse J, Zheng BH, Bradley A, Tilghman SM: Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice. Nat Genet 2001;29:7882.
146.
Jaffe R, Hashida Y, Yunis E: The endocrine pancreas of the neonate and infant. Perspect Pediatr Pathol 1982;7:137–165.
147.
Lee PJ, Leonard JV: Hypoglycaemia; in Brook CGD (ed): Clinical Paediatric Endocrinology, ed 3. Oxford, Blackwell Science, 1995, pp 677–693.
148.
Lteif AN, Schwenk WF: Hypoglycemia in infants and children. Endocrinol Metab Clin North Am 1999;28:619–646.
149.
Glaser B, Landau H: Long-term treatment with the somatostatin analogue SMS 201-995: Alternative to pancreatectomy in persistent hyperinsulinaemic hypoglycaemia of infancy. Digestion 1990;45:27–35.
150.
Dacou-Voutetakis C, Psychou F, Maniati-Christidis M: Persistent hyperinsulinemic hypoglycemia of infancy: Long-term results. J Pediatr Endocrinol Metab 1998;11:131–141.
151.
Sawathiparnich P, Likitmaskul S, Angsusingha K, Nimkarn S, Chaichanwatanakul K, Laohapansang M, Tuchinda C: Persistent hyperinsulinemic hypoglycemia of infancy: Experience at Siriraj Hospital. J Med Assoc Thai 2002;85(suppl 2):506–512.
152.
Darendeliler F, Fournet JC, Bas F, Junien C, Gross MS, Bundak R, Saka N, Gunoz H: ABCC8 (SUR1) and KCNJ11 (KIR6.2) mutations in persistent hyperinsulinemic hypoglycemia of infancy and evaluation of different therapeutic measures. J Pediatr Endocrinol Metab 2002;15:993–1000.
153.
Wald M, Lawrenz K, Luckner D, Seimann R, Mohnike K, Schober E: Glucagon therapy as a possible cause of erythema necrolyticum migrans in two neonates with persistent hyperinsulinaemic hypoglycaemia. Eur J Pediatr 2002;161:600–603.
154.
Pace CS, Tarvin JT: Somatostatin: Mechanism of action in pancreatic islet β-cells. Diabetes 1981;30:836–842.
155.
Nilsson T, Arkhammar P, Rorsman P, Berggren PO: Suppression of insulin release by galanin and somatostatin is mediated by a G-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. J Biol Chem 1989;264:973–980.
156.
De Weille JR, Schmid-Antomarchi H, Fosset M, Lazdunski M: Regulation of ATP-sensitive K+ channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP. Proc Natl Acad Sci USA 1989;86:2971–2975.
157.
Ribalet B, Eddlestone GT: Characterization of the G protein coupling of SRIF and β-adrenergic receptors to the maxi KCa channel in insulin-secreting cells. J Membr Biol 1995;148:111–125.
158.
Smith PA, Sellers LA, Humphrey PPA: Somatostatin activates two types of inwardly rectifying K+ channels in MIN-6 cells J Physiol 2001;532;127–142.
159.
Hsu WH, Xiang HD, Rajan AS, Kunze DL, Boyd AE 3rd: Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the β-cell. J Biol Chem 1991;266:837–843.
160.
Howell SL, Montague W: Adenylate cyclase activity in isolated rat islets of Langerhans: Effects of agents which alter rates of insulin secretion. Biochim Biophys Acta 1973;320:44–52.
161.
Malm D, Giaever A, Vonen B, Florholmen J: Cholecystokinin and somatostatin modulate the glucose-induced insulin secretion by different mechanisms in pancreatic islets. A study on phospholipase C activity and calcium requirement. Scand J Clin Lab Invest 1993;53:671–676.
162.
Ullrich S, Prentki M, Wollheim CB: Somatostatin inhibition of Ca2+-induced insulin secretion in permeabilized HIT-T15 cells. Biochem J 1990;270:273–276.
163.
Bruno JF, Xu Y, Song J, Berelowitz M: Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci USA 1992;89:11151–11155.
164.
Patel YC, Greenwood MT, Warszynska A, Panetta R, Srikant CB: All five cloned human somatostatin receptors (hSSTR1–5) are functionally coupled to adenylyl cyclase. Biochem Biophys Res Commun 1994;198:605–612.
165.
Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC, Patel YC: Subtype-selective expression of the five somatostatin receptors (hSSTR1–5) in human pancreatic islet cells: A quantitative double-label immunohistochemical analysis. Diabetes 1999;48:77–85.
166.
Khelili S, de Tullio P, Lebrun P, Fillet M, Antoine MH, Ouedraogo R, Dupont L, Fontaine J, Felekidis A, Leclerc G, Delarge J, Pirotte B: Preparation and pharmacological evaluation of the R- and S-enantiomers of 3-(2-butylamino)-4H- and 3-(3-methyl-2-butyl- amino)-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide, two tissue selective ATP-sensitive potassium channel openers. Bioorg Med Chem 2001;7:1513–1520.
167.
Eichmann D, Hufnagel M, Quick P, Santer R: Treatment of hyperinsulinaemic hypoglycaemia with nifedipine. Eur J Paediatr 1999;158:204–206.
168.
Shanbag P, Pathak A, Vaidya M, Shahid SK: Persistent hyperinsulinemic hypoglycemia of infancy – Successful therapy with nifedipine. Indian J Pediatr 2002;69:271–272.
169.
Cosgrove KE, Shepherd RM, Hashmi MN, Lindley KJ, Aynsley-Green A, Ämmälä C, Dunne MJ: The role of calcium ions in determining insulin hypersecretion in patients with persistent hyperinsulinaemic hypoglycaemia of infancy. Horm Res 1999;55:15P.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.