This report describes the separation and characterization of estrogen receptors (ER) according to their degree of hydrophobicity and surface charges. Molybdate-stabilized [3H]ER from rabbit uterine cytosol was sequentially purified by passage through a size-exclusion pre-column, an anion-exchange column, and a hydrophobic interaction column. With fresh cytosol, a major radioactive peak was eluted from the DEAE columns; a major peak and a minor, less hydrophobic, peak were eluted from the hydrophobic column. In contrast, ER from frozen cytosol showed one peak in the DEAE-column and exhibited four radioactive peaks in the hydrophobic column. By sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, [3H] tamoxifen aziridine(TA)-labelled ER showed radioactive bands at 62 and 48 kd. The subunits which were characterized by these radioactive bands were successfully separated by the hydrophobic column; the more hydrophobic subunit corresponded to the 62 kd band. The HPLC-purified [3H]TA-labelled ER subunits sediment at a 7.4-8.5S region in a low-salt sucrose gradient. These results show that (a) differential negative surface charge and hydrophobic areas exist in the holo-receptor and its subunits, and (b) the hydrophobic interaction HPLC column separates the two major 8S steroid binding sub-units of ER.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.