Background: tRNAscan-SE is the leading tool for transfer RNA (tRNA) annotation, which has been widely used in the field. However, tRNAscan-SE can return a significant number of false positives when applied to large sequences. Recently, conventional machine learning methods have been proposed to address this issue, but their efficiency can be still limited due to their dependency on handcrafted features. With the growing availability of large-scale genomic data-sets, deep learning methods, especially convolutional neural networks, have demonstrated excellent power in characterizing sequence patterns in genomic sequences. Thus, we hypothesize that deep learning may bring further improvement for tRNA prediction. Methods: We proposed a new computational approach based on deep neural networks to predict tRNA gene sequences. We designed and investigated various deep neural network architectures. We used the tRNA sequences as positive samples, and the false-positive tRNA sequences predicted by tRNAscan-SE in coding sequences as negative samples, to train and evaluate the proposed models by comparison with the conventional machine learning methods and popular tRNA prediction tools. Results: Using the one-hot encoding method, our proposed models can extract features without involving extensive manual feature engineering. Our proposed best model outperformed the existing methods under different performance metrics. Conclusion: The proposed deep learning methods can substantially reduce the false positive output by the state-of-the-art tool tRNAscan-SE. Coupled with tRNAscan-SE, it can serve as a useful complementary tool for tRNA annotation. The application to tRNA prediction demonstrates the superiority of deep learning in automatic feature generation for characterizing sequence patterns.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.