Background: Genome-wide association studies (GWASs) have identified hundreds of genetic variants associated with complex diseases, but these variants appear to explain very little of the disease heritability. The typical single-locus association analysis in a GWAS fails to detect variants with small effect sizes and to capture higher-order interaction among these variants. Multilocus association analysis provides a powerful alternative by jointly modeling the variants within a gene or a pathway and by reducing the burden of multiple hypothesis testing in a GWAS. Methods: Here, we propose a powerful and flexible dimension reduction approach to model multilocus association. We use a Bayesian partitioning model which clusters SNPs according to their direction of association, models higher-order interactions using a flexible scoring scheme and uses posterior marginal probabilities to detect association between the SNP set and the disease. Results: We illustrate our method using extensive simulation studies and applying it to detect multilocus interaction in Atherosclerosis Risk in Communities (ARIC) GWAS with type 2 diabetes. Conclusion: We demonstrate that our approach has better power to detect multilocus interactions than several existing approaches. When applied to the ARIC study dataset with 9,328 individuals to study gene-based associations for type 2 diabetes, our method identified some novel variants not detected by conventional single-locus association analyses.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.