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(p = 0.007), and skinfold thickness (p < 0.007). For example, 
each one-allele increase in GRS was estimated to result in a 
0.16 increase in BMI among males born in 1930 compared to 
a 0.47 increase among those born in 1970.  Conclusions: 

 These novel findings suggest the influence of common obe-
sity susceptibility variants has increased during the obesity 
epidemic.  © 2013 S. Karger AG, Basel 

 Introduction 

 A recent debate published in the  British Medical Journal  
posed the following question: ‘Are the causes of obesity 
primarily environmental?’  [1, 2] . This seemingly straight-
forward question belies a common misunderstanding 
about gene-environment interaction and the obesity epi-
demic. The nearly 2-fold increase in obesity prevalence 
among United States adults from 12.8 to 22.5% from 1960 
to 1988  [3]  was certainly environmental in the sense that 
multiple concurrent nutritional and non-nutritional envi-
ronmental changes occurred over that period, including 
changes in food production and food marketing, trans-
port, sleep patterns, and environmental pollutant expo-
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 Abstract 

  Objective:  To test the hypothesis that the statistical effect of 
obesity-related genetic variants on adulthood adiposity 
traits depends on birth year.  Methods:  The study sample in-
cluded 907 related, non-Hispanic White participants in the 
Fels Longitudinal Study, born between 1901 and 1986, and 
aged 25–64.99 years (474 females; 433 males) at the time of 
measurement. All had both genotype data from which a ge-
netic risk score (GRS) composed of 32 well-replicated obesi-
ty-related common single nucleotide polymorphisms was 
created, and phenotype data [including body mass index 
(BMI), waist circumference, and the sum of four subcutane-
ous skinfolds]. Maximum likelihood-based variance compo-
nents analysis was used to estimate trait heritabilities, main 
effects of GRS and birth year, GRS-by-birth year interaction, 
sex, and age.  Results:  Positive GRS-by-birth year interaction 
effects were found for BMI (p < 0.001), waist circumference 
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sure, among others, that in aggregate resulted in an in-
creased prevalence of obesity  [4–6] . Yet, none of these en-
vironmental drivers directly affected weight gain at the 
individual level. Rather, environmental exposures may 
lead to a particular case of obesity through individual-lev-
el responses from the molecular to the behavioral level. 
Such responses vary between individuals and are strongly 
influenced by genetic factors. The proportion variance in 
body mass index (BMI) accounted for by additive genetic 
effects is estimated to be 40–70% in virtually every popula-
tion studied  [7, 8] . For instance, heritability of BMI was the 
same (approximately 50%) in families of West African an-
cestry living in Nigeria, Jamaica, and the United States, 
despite the large differences in nutrition and environmen-
tal conditions between them  [9] . The point is that while the 
environment dictates the prevalence of obesity, genetic 
variation plays a potent role in determining which particu-
lar individuals ultimately will develop it.

  Ravussin and Bouchard  [10]  suggested that within a 
population, the effect of high genetic susceptibility to 
obesity (high genetic ‘load’) is not ‘unmasked’ unless in-
dividuals are exposed to highly obesogenic conditions. To 
date, the clearest empirical support for this idea is the in-
teraction of physical activity level with variants in the 
FTO gene  [11] , the strongest common genetic suscepti-
bility locus for obesity yet discovered  [12–14] . The asso-
ciation of FTO variants with adiposity depends on physi-
cal activity level, with much weaker associations in indi-
viduals with at least moderate physical activity  [11, 15] . 
In African-Americans, at least in men, a significant asso-
ciation of the FTO variant with BMI, waist circumference 
(WC), and skinfolds was only observed in those with very 
low self-reported physical activity, suggesting that only in 
the absence of virtually any physical activity did the FTO 
risk allele exert effects on adiposity  [16] . These results are 
for a single gene variant in interaction with a single envi-
ronmental factor, and more comprehensive genome-
wide interrogation of gene-by-environment interactions 
is ongoing  [17] . Nonetheless, no single study or group of 
studies will have high-quality data on all obesity-related 
environmental exposures, thereby making it difficult to 
capture the totality of such environmental unveiling of 
genetic effects.

  An approach we have taken is to use the wide range of 
birth years in Fels Longitudinal Study subjects to investi-
gate birth year as a proxy for individual-level exposure to 
the numerous known and unknown nutritional and non-
nutritional factors that have changed over time, particu-
larly in the last half-century  [5] , and that may have af-
fected weight gain. The degree to which genetic associa-

tions with adiposity vary with birth year (i.e. genetic 
cohort effects) would be a broad measure of gene-by-en-
vironment interaction. For example, we recently used this 
approach and found a stronger association of a set of 
common menarche-related genetic variants on peri-pu-
bertal BMI among children in the Fels Longitudinal Study 
born later in the 20th century than those born earlier in 
the 20th century  [18] . In the present analysis, a number 
of well-replicated common genetic variants found 
through genome-wide association studies (GWAS) to be 
associated with adulthood BMI and obesity were used to 
represent individual-level genetic susceptibility to elevat-
ed adiposity (genetic load). Because the Fels Longitudinal 
Study is composed of related individuals, the effect of this 
aggregate set of variants on a variety of adiposity traits, 
and its interaction with birth year, could be assessed while 
simultaneously accounting for the shared additive genet-
ic and environmental effects within families. The results 
presented here provide the first empirical evidence of 
measured genotype-by-year of birth interaction on adi-
posity-related traits.

  Methods 

 Study Design and Subjects 
 A cross-sectional design was used. Subjects included 907 non-

Hispanic White adults (477 men, 430 women) in the Fels Longitu-
dinal Study who were born between 1901 and 1986. For each sub-
ject, a single study visit was chosen at random among their visits 
that included complete adiposity data and that occurred between 
the ages of 25 and 64 years, a period after growth is complete and 
loss of adipose tissue due to aging is still minimal  [19] . The Fels 
Longitudinal Study has been described in detail elsewhere  [20] ; 
briefly, the study began in 1929 as a study of normative child 
growth and development, and continues today primarily as a study 
of genetic and environmental determinants of variation in growth 
and aging traits and the antecedents of common chronic disease. 
Infants living in Yellow Springs, Ohio, and nearby cities and towns 
in southwestern Ohio (e.g. Dayton, Ohio), USA, have been en-
rolled from 1929 onward. Mothers and other family members were 
also simultaneously enrolled. Participants were not selected on the 
basis of any pre-existing disease. Up to four generations of par-
ticipants within a family are being actively followed. The Fels Lon-
gitudinal Study, although not a nationally representative study, is 
nonetheless a normative growth and aging study of a generally 
healthy and well-nourished population. In fact, infant growth data 
from the Fels Longitudinal Study were used as the basis for United 
States infant growth charts until 2000 as they were the most repre-
sentative longitudinal data then available  [21] . There are less than 
6 cases of childhood growth stunting in the entire study, and fur-
ther, markers of maturational timing (age at menarche and age at 
peak height velocity) were stable in individuals born 1920–1970 
 [22, 23] , supporting the assertion that childhood nutritional status 
was adequate throughout the period of study.
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  Subjects selected for the present analysis included all of those 
with at least one measurement of BMI between ages 25 and 64 
years and single nucleotide polymorphism (SNP) genotype data. 
Comparison of the analysis sample to Fels Longitudinal Study par-
ticipants with BMI data born in 1901–1986 and aged 25–64 years, 
but who did not have genetic marker data (n = 574), showed that 
the BMI was 1.36 higher in the analysis sample (p < 0.001).

  The 907 participants in the present study were distributed 
among 148 nuclear and extended families that in total contained 
8,043 relative pairings, of which 1,122 pairs were first-degree rela-
tives, 1,260 pairs were second-degree relatives, 746 pairs were 
third-degree relatives, and 1,260 pairs were less closely related. All 
protocols and informed consent documents used in the Fels Lon-
gitudinal Study were approved by the Wright State University In-
stitutional Review Board.

  Phenotype Data 
 Weight, stature, WC, hip circumference, and subcutaneous 

skinfold thickness (biceps, triceps, suprailiac, and subscapular) 
were measured in triplicate by two trained staff members using 
standard anthropometric methods and equipment  [24] ; the aver-
age of the triplicate measures was used in the analyses. BMI was 
calculated as weight (kg) divided by height (cm) squared; a sum of 
skinfold measures was calculated to represent subcutaneous adi-
posity, and waist-hip ratio (WHR) and waist-height ratio (WHtR) 
were calculated as measures of central adiposity.

  Genotype Data 
 DNA was extracted from stored (–80   °   C) buffy coats obtained 

from fresh whole blood collected via venipuncture using standard 
procedures. Individuals were genotyped using the genome-wide 
Illumina 610-Quad Bead-chip array (Applied Biosystems Incorpo-
rated, USA) at the Texas Biomedical Research Institute. SimWalk2 
mistyping analysis  [25–27]  was used to determine genotypes that 
had a high probability of being incorrectly called, and these Men-
delian errors were removed by blanking these genotypes. Many of 
the SNPs included in the obesity genetic risk score (GRS) were not 
included on the Illumina 610-Quad chip, and so HapMap 2 SNP 
genotypes were imputed using MaCH1  [28, 29] , and were further 
cleaned using SimWalk 2  [25–27] . Merlin  [30]  was used to im-
pute any remaining missing genotypes using the pedigree informa-
tion. The squared correlation between imputed and directly mea-
sured genotypes (R 2 ) for the SNPs ranged from 0.95 to 1.0 (online 
suppl. table  1; for all online supplementary material, see www.
karger.com/doi/10.1159/000351742).

  Genetic Risk Score 
 Known common SNPs explain only a small proportion of the 

phenotypic variance in common disease traits  [31] . To minimize 
the multiple testing problem and to maximize statistical power, a 
risk score approach was taken  [32] . This approach investigates the 
combined effects of multiple genetic variants in a single variable to 
represent measured genetic susceptibility, in this case to obesity. 
Specifically, the variants reported by Speliotes et al.  [33]  were used 
to construct the GRS, as this meta-analysis of GWAS studies in 
over 250,000 individuals provided robust replication for a large 
number of individual variants influencing BMI in individuals of 
European ancestry. The 32 SNPs identified in that study were used 
to calculate the BMI GRS for each subject in the present analysis. 
For each SNP, the allele that was reported by Speliotes et al.  [33]  to 

be associated with greater BMI was considered the  risk allele  and 
then the number of risk alleles for each SNP (0, 1, or 2) was count-
ed. The GRS was computed as the sum of risk alleles across the 32 
SNPs, so that a 1-unit increase corresponded to an increase of 1 
risk allele. Details on the SNP rs numbers, closest genes, risk alleles 
for each SNP, risk allele frequencies, and imputation quality R 2  
values are provided in online supplementary table 1.

  As the individual SNPs vary in effect size, we confirmed that 
the GRS was a valid representation of the cumulative effect of each 
SNP. For each trait in the analysis, we tested for heterogeneity of 
regression effects by fitting a model in which all 32 SNPs were in-
cluded as covariates but were constrained to have equal effect, and 
comparing it to a model in which the effect of each SNP was esti-
mated separately. The resulting likelihood ratio test showed no 
evidence for allele-specific effect heterogeneity for BMI, WC, hip 
circumference, sum of skinfolds, WHR, or WHtR (d.f. = 31, all
p > 0.25). Second, we tested for heterogeneity of SNP-by-birth year 
effects by adding those 32 interaction terms to the model as well 
(d.f. = 62, all p > 0.60). These sensitivity analyses validate the crit-
ical assumption of the polygenic GRS regarding equal small allelic 
effects, and the specific assumption of equal allele-by-birth year 
interaction effects.

  Statistical Analysis 
 Age- and sex-adjusted adiposity trait means were estimated us-

ing general linear regression models to test cohort effects using a 
derived birth cohort variable that grouped birth years into 5 ap-
proximately equal groups:  ≤ 1939, 1940–1949, 1950–1959, 1960–
1969, and 1970 or later. Scatter plots of adiposity traits on year of 
birth, by age group (25–34, 35–44, 45–54, and 55–64 years), were 
analyzed to examine linearity of the associations. Linear regression 
analysis was used to examine crude associations between GRS and 
adiposity traits, without adjustment for relatedness. SAS version 
9.2 (SAS, Carey, N.C., USA) was used for these analyses.

  The effects of GRS and its interaction with year of birth on 
adiposity traits were formally modeled using maximum likeli-
hood-based variance components methods implemented in the 
SOLAR analytic platform  [34] . This approach accounts for the 
non-independence among family members  [35] , models the addi-
tive genetic effects and residual environmental effects as random 
effects, and models the covariates as fixed effects, with principal 
components scores added to the model to adjust for population 
stratification  [36] . In the first stage of analysis, we tested sex-by-
year of birth and sex-by-GRS interaction effects on all adiposity 
traits; neither had significant associations with any trait, confirm-
ing that sexes could be combined for subsequent analysis. Then, 
we tested the following covariates in the genetic model: GRS, year 
of birth, GRS-by-year of birth, sex, the exact age at measurement 
(age), age 2 , sex-by-age, and sex-by-age 2 . Whereas the descriptive 
analyses used categorical variables to describe year of birth and 
GRS relationships, the results indicated linear relationships among 
the variables, and so year of birth and GRS were entered as con-
tinuous variables in the genetic models. Due to residual kurtosis, 
the adiposity traits were all normalized using direct Gaussian 
transformation prior to analysis.

  Statistical significance of individual covariate effects was evalu-
ated using likelihood ratio tests comparing models where covariate 
effects were estimated against models where covariate effects were 
set to zero. Narrow-sense heritability (i.e. the phenotypic variance 
attributable to additive genetic effects; h 2  = σ  2  G / 2  P , where σ  2  G  is the ad-
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ditive genetic variance and σ 2  P  is the total phenotypic variance) was 
estimated from the above models and is presented along with the 
covariate parameter estimates and the proportion of residual vari-
ance explained by all covariates. The proportion of the variation 
explained by the GRS, birth year, and their interaction with one an-
other was calculated for each trait as the difference in total variance 
explained by covariates in the final model and the total variance 
explained by covariates in a reduced model in which either GRS and 
GRS-by-year of birth, or year of birth and GRS-by-year of birth, 
were not estimated. Finally, to illustrate the interaction effects, pa-
rameter estimates from the final models were used to calculate pre-
dicted increases in each adiposity trait (untransformed values) per 
unit GRS at the referent values for the covariates (male, age 45 years) 
for those born early (1930) and late (1970) in the study.

  In summary, the approach was designed to test the hypothesis 
that particular genetic variants known to influence BMI and re-
lated traits had, in aggregate, a significantly different effect on ad-
iposity traits in family members born at different points in time, 
both before and after the onset of the obesity epidemic, while ac-
counting for relatedness and other shared additive genetic and 
random environmental effects.

  Results 

 Main Effect of Birth Year on Adiposity Traits 
 A description of the study sample is provided in  ta-

ble 1 . The subjects were on average 43.3 years of age at the 
time of measurement, with mean BMI (26.4) in the low 
overweight range. Although each birth year group in-
cluded a wide age range, individuals born in earlier birth 
year groups were on average older at the time of measure-
ment (p < 0.0001). For example, those born before 1940 
were on average 51 years of age at measurement, while 
those born after 1970 were on average 31 years at mea-
surement. Age- and sex-adjusted least squares means for 
the adiposity traits by 10-year birth cohort show signifi-
cant birth year effects on BMI, height, WC, hip circum-
ference, WHR, and WHtR (all p < 0.05) and a trend for 
sum of skinfolds (p = 0.14). For instance, mean BMI in-
creased from 24.8 in those born before 1940 to 27.9 in 
those born after 1970 (p < 0.0001), and mean WC in-
creased from 90.6 to 98.9 cm (p = 0.02).

  To further examine possible confounding by age in the 
adiposity-by-birth year relationships, we examined scat-
ter plots of each adiposity trait, as shown for WC in  figure 
1 . This illustrates that within each 10-year age group, a 
positive association of WC was seen with increasing birth 
year, and within birth year, older age groups had higher 
WC. The important point is that unlike a cross-sectional 
study in which all measurements are obtained at the same 
time (period) (resulting in cohort and age effects being 
completely confounded with one another), the availabil-

ity of observations over the 80-year period of the Fels 
Longitudinal Study allows for age and cohort effects to be 
largely disentangled.

  Main Effect of the GRS on Adiposity Traits 
 Individual GRS values ranged from 18 to 39 alleles and 

there were no differences in mean GRS by birth year 
group ( table 1 ). This indicates that there is no gene-by-
environment correlation or differential survival of indi-
viduals with low or high genetic susceptibility to obesity 
across birth year groups. As would be expected of a poly-
genic trait risk score, the GRS had a normal distribution, 
and again as expected, individuals with higher values of 
the GRS tended to have higher BMI, the effect of which is 
approximately linear ( fig. 2 ). Of note is that even among 
individuals with low genetic load (GRS = 18–21 alleles), 
mean adulthood BMI was nonetheless over 25. The other 
adiposity traits also exhibited a linear association with 
GRS, and the parameter estimates from sex- and age-ad-
justed regression models (unadjusted for relatedness) for 
all traits are presented in  table  2 . All traits other than 
height (p = 0.12) were positively associated with the GRS 
in these phenotypic-level regressions.

  Interaction of GRS and Birth Year on Adiposity Traits 
 Parameter estimates from the best-fitting and most 

parsimonious genetic models formally testing main ef-
fects of GRS, birth year, and their interaction with one 
another on normalized adiposity traits are presented in 
 table 3 . We present results only for traits for which main 
effects (p < 0.05) were observed for birth year, GRS, or 
both. Inclusion of age 2  and sex-by-age 2  terms did not im-
prove the likelihood of the models and were dropped 
from the final models, but age, sex, and sex-by-age effects 
remained, in addition to GRS, birth year, and the GRS-
by-birth year interaction. All traits were significantly 
heritable (h2 > 0.35, p< 0.0001). There were positive co-
variate effects of the interaction between GRS and year 
of birth on weight, BMI, WC, WHtR, and sum of skin-
folds (p < 0.007 for all). An interaction was not evident 
for WHR. The residual trait variance explained by the 
GRS was approximately 1%, that explained by birth year 
was 0.2–2.4%, and that explained by GRS-by-birth year 
was 0.2–0.9%. Finally, because the GRS was based on 
SNPs identified in GWAS of BMI, we examined whether 
inclusion of BMI in the final models for all other adipos-
ity traits altered their results. The estimates for the effects 
of GRS and GRS-by-birth year were reduced and no lon-
ger statistically significant, showing that all of the effects 
of the GRS and its interaction with birth year on the oth-
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  Fig. 1.  Positive association of WC with 
birth year in 907 Fels Longitudinal Study 
adults, by age group. Plots show linearity of 
birth year association within age group, 
and increasing WC by age group within 
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Table 1.  Description of the sample data: 907 Fels Longitudinal Study adults aged 25 – 64 years

 Birth year p value

 all ≤1939 1940 – 1949 1950 – 1959 1960 – 1969 ≥1970

Subjects, n 907 177 171 196 183 180
Female sex, % 47.4 49.7 49.0 44.8 48.9 46.3 0.56c

Adulthood obesity, n (%) 188 (20.7) 28 (15.8) 34 (19.9) 42 (21.4) 40 (21.9) 44 (24.4) <0.001c

Adulthood underweight, n (%) 16 (1.8) 5 (2.8) 2 (1.2) 2 (1.0) 4 (2.2) 3 (1.7) 0.44c

Agea 43.3 ± 11.4
[25 – 65]

51.2 ± 11.0
[26 – 65]

51.5 ± 9.4
[25 – 65]

45.9 ± 8.0
[25 – 61]

36.8 ± 7.1
[26 – 51]

31.5 ± 4.1
[25 – 41]

<0.001d

Birth yeara 1955 ± 15.0
[1901 – 1986]

1931 ± 7.3
[1901 – 1939]

1944.5 ± 3.0
[1940 – 1949]

1954.5 ± 2.8
[1950 – 1959]

1964.4 ± 3.0
[1960 – 1964]

1975.6 ± 4.2
[1970 – 1986]

<0.001d

GRS, n risk allelesa 28.46 ± 3.45
[18 – 38]

28.9 ± 3.5
[19 – 38]

28.1 ± 3.6
[18 – 38]

28.5 ± 3.7
[18 – 37]

28.5 ± 3.5
[29 – 37]

28.3 ± 3.4
[21 – 39]

0.31d

Weight, kgb 78.5 ± 18.8
[42.8 – 176.9]

72.2 ± 1.4 75.2 ± 1.38 78.7 ± 1.2 82.2 ± 1.3 83.8 ± 1.5 <0.0001d

Height, cmb

(n = 907)
172.10 ± 9.68
[149 – 205]

170.2 ± 0.54 172.2 ± 0.55 172.5 ± 0.48 172.8 ± 0.52 172.8 ± 0.58 0.005d

BMIb

(n = 907)
26.4 ± 5.5
[15 – 63]

24.8 ± 0.44 25.3 ± 0.45 26.3 ± 0.39 27.5 ± 0.42 27.9 ± 0.48 <0.0001d

WC, cmb

(n = 831)
95.4 ± 14.6
[65 – 163]

90.6 ± 1.63 93.1 ± 1.3 94.8 ± 0.98 97.4 ± 1.13 98.9 ± 1.35 0.02d

Hip circumference, cmb

(n = 819)
105.0 ± 10.8
[80.4 – 173.6]

102.5 ± 1.4 104.0 ± 1.04 104.6 ± 0.79 106.4 ± 0.90 106.4 ± 1.1 0.31d

WHtRb

(n = 831)
0.55 ± 0.08
[0.39 – 1.04]

0.53 ± 0.01 0.54 ± 0.007 0.55 ± 0.006 0.57 ± 0.008 0.57 ± 0.01 0.03d

WHRb

(n = 819)
0.91 ± 0.08
[0.69 – 1.17]

0.88 ± 0.008 0.89 ± 0.006 0.90 ± 0.004 0.91 ± 0.005 0.93 ± 0.006 0.006d

Sum of skinfolds, mmb

(n = 775)
66.9 ± 26.6
[17 – 165]

62.3 ± 2.4 67.8 ± 2.4 65.4 ± 1.9 70.9 ± 2.2 66.6 ± 2.7 0.14d

a Data are means ± SD [range]. b Data are sex- and age-adjusted means ± SE [range]. c χ2 statistic. d F statistic.
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er adiposity traits are accounted for by their effects on 
BMI.

  As the parameter estimates themselves are difficult to 
interpret, we used them to compare the model-predicted 
GRS effect (per allele) on each trait for a 45-year-old male 
born in 1930 to a 45-year-old male born in 1970, using 

the untransformed values of the adiposity variables ( ta-
ble 4 ). In each case, the per-allele effect of the GRS was 
approximately 3 times greater for men born in 1970 than 
for men born in 1930. The GRS-by-sex interaction term 
was not significant for any of the traits, and similar results 
were obtained for women.

  Discussion 

 The present study provides novel evidence that the ag-
gregate effect of common genetic variants on adulthood 
adiposity depends on year of birth, using data from 907 
related, non-Hispanic White participants in the Fels Lon-
gitudinal Study born between 1901 and 1986. These indi-
viduals were all examined in adulthood, but at different 
ages, and over an >80-year period, allowing for cohort 
and age effects to be disentangled, and allowing contrasts 
to be made between individuals growing up and living in 
markedly different periods, both before and after the on-
set of the obesity epidemic in the United States. The study 
provides empirical support for the theory long held by 
obesity researchers that as the environment becomes 
more obesogenic, those with higher genetic predisposi-
tion for obesity will gain more weight than those with 
lower genetic predisposition. This concept is illustrated 
in  figure 3 , from Ravussin and Bouchard  [10]  in which 
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  Fig. 2.  Frequency distribution for values of 
a 32-SNP obesity GRS (from Speliotes et al. 
 [33] ) in 907 Fels Longitudinal Study adults, 
overlain by mean and standard error (SE) 
for BMI within each GRS group. 

Table 2.  Main effect of a GRS for obesity on size and adiposity traits 
in Fels Longitudinal Study adults aged 25 – 64 years: phenotypic-
level association

β (SE) p value

Weight (kg; n = 907) 0.51 (0.16) 0.001
Height (cm; n = 907) 0.10 (0.06) 0.115
BMI (n = 907) 0.14 (0.05) 0.007
WC (cm; n = 831) 0.42 (0.13) 0.0016
Hip circumference (cm; n = 819) 0.36 (0.11) 0.0007
WHtR (n = 831) 0.002 (0.0007) 0.008
WHR (n = 819) 0.001 (0.0005) 0.050
Sum of skinfolds (mm; n = 775) 0.80 (0.26) 0.002

 Parameter estimates are from linear regression models with the 
32-SNP obesity GRS as the independent variable and normalized 
adiposity traits entered as continuous dependent variables.

Sex and age were included as covariates to adjust the estimates 
for sex and age variation in the dependent variables.
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Table 3.  Parameter estimates from the best-fitting and most parsimonious genetic model testing main effects of year of birth, GRS, and 
their interaction with one another, on adiposity traits in Fels Longitudinal Study adults

Weight (kg) BMI WC (cm) WHtR WHR Sum of 4
skinfolds (mm)

Subjects, n 907 907 831 831 819 775
Heritability (h2)a

p value
0.59 (0.07)

<0.0001
0.546 (0.065)

<0.0001
0.526 (0.070)

<0.0001
0.510 (0.069)

<0.0001
0.508 (0.074)

<0.0001
0.353 (0.077)

<0.0001
GRSa

p value
0.030 (0.009)

<0.001
0.030 (0.010)
0.002

0.032 (0.009)
0.001

0.030 (0.010)
0.002

0.017 (0.008)
0.032

0.032 (0.010)
0.002

Sexa

Male (referent) – – – – – –
Female
p value

–0.931 (0.068)
<0.001

–0.303 (0.060)
<0.001

–0.629 (0.060)
<0.001

–0.080 (0.063)
0.202

–1.179 (0.050)
<0.001

0.561 (0.066)
<0.001

Birth year (referent: 1929)a

p value
0.009 (0.005)
0.034

0.012 (0.002)
<0.001

0.010 (0.005)
0.048

0.008 (0.005)
0.105

0.013 (0.004)
0.001

0.006 (0.004)
0.162

Age (referent: 45 years)a

p value
0.02 (0.006)

<0.001
0.028 (0.004)

<0.001
0.035 (0.006)

<0.001
0.040 (0.007)

<0.001
0.045 (0.005)

<0.001
0.019 (0.006)
0.002

Age-by-sexa

p value
–0.010 (0.005)

0.041
–0.009 (0.005)

0.085
–0.011 (0.005)

0.034
–0.013 (0.005)

0.016
–0.011 (0.004)

0.014
–0.005 (0.006)

0.387
GRS-by-birth yeara

p value
0.002 (0.0005)

<0.001
0.002 (0.001)

<0.001
0.002 (0.001)
0.007

0.002 (0.001)
0.007

0.001 (0.000)
0.170

0.002 (0.001)
0.007

Residual variance explained
by all covariates above  25.9% 8.8% 17.2% 9.8% 43.3% 11.1%

Variance explained by YOB 0.6% 2.4% 0.6% 0.5% 1.0% 0.2%
Variance explained by GRS 0.9% 0.9% 1.1% 0.9% 0.2% 1.2%
Variance explained by

GRS-by-YOB interaction 0.7% 0.9% 0.7% 0.7% 0.2% 0.8%

 All traits were normalized using direct Gaussian transformation prior to analysis; the model shown is the final, reduced model after 
removal of variance components (age2, age2-by-sex, year of birth-by-sex, and GRS-by-sex) from the full model that did not significant-
ly improve the model fit as determined by comparison of log-likelihoods and the Akaike Information Criterion. a Values are B (SE). 
YOB = Year of birth.

BM
I

OR OP
Obesity susceptibility

‘Obesogenic’
environment

‘Restrictive’
environment

  Fig. 3.  A classic heuristic model for gene-by-environment interac-
tion on BMI within a genetic population moving from an energy-
restrictive environment to an obesogenic environment (adapted 
from Ravussin and Bouchard  [10] , used with permission). OR = 
Obesity-resistant individuals; OP = obesity-prone individuals. 

Table 4.  Predicted effects of an obesity GRS on adiposity traits for 
individuals born in1930 versus 1970a

Trait Effect of a 1-allele increase in the GRS 
 on adiposity traits
birth ye ar:
1930

birth year:
1970

fold-change 
in GRS effect

Weight, kg 0.62 1.78 2.89
BMI 0.16 0.47 2.87
WC, cm 0.47 1.24 2.64
WHtR 0.002 0.006 2.71
Sum of skinfolds, mm 0.86 2.56 2.96

 a Values are calculated from model parameter estimates as in 
table 3, assuming sex = male, and age = 45 years, except adiposity 
traits were not inverse normalized to improve interpretation.
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the ‘restrictive’ and ‘obesogenic’ environments were con-
ceived as points on a spectrum of economic development, 
from ‘traditional’ to ‘industrialized’ economies.

  The present study applies this global-level heuristic 
model to gene-by-environment interaction over the short-
er term and in a single, adequately nourished (non-energy 
restricted) population. The Fels Longitudinal Study in-
cludes individuals born in Southwestern Ohio cities and 
towns, and their descendants, from 1929 to the present. 
Secular increases in adulthood BMI, WC, subcutaneous 
skinfolds, and WHR were shown, as they have similarly 
occurred in United States adults over this period  [3] . Mean 
stature also increased by approximately 2.5 cm over the 
period, suggesting that some improvements in childhood 
health and nutrition may also have occurred. However, the 
Fels cohort did not experience chronic nutritional stress 
even early in the study; there were only 6 cases of linear 
growth stunting in infancy or early childhood, and devel-
opmental timing has been quite stable as well  [22–23] . The 
study participants can therefore be characterized, on the 
whole, as an adequately nourished representation of ‘Mid-
dle America’. In this light, nutritional and non-nutritional 
changes that occurred between 1901 and 1986 in the Fels 
Longitudinal Study are likely far more subtle than those 
that are now occurring in populations undergoing rapid 
economic development such as China and India  [4, 37] . 
Nonetheless, a 3-fold increase in the per-allele effect of the 
GRS occurred. An implication of the findings is that the 
influence of common genetic variants on adiposity-related 
traits would be expected to increase to a greater extent in 
middle- and lower-income countries experiencing greater 
changes in the nutritional environment.

  Another implication of our study is that cohort effects 
may explain some of the difficulty in replicating in ge-
netic association studies; for instance, Franks et al.  [38]  
found a significant association of an  11βHSD1  variant 
with blood pressure among Pima Indian family members 
born earlier in that study, as was predicted from animal 
models, but a much weaker relationship in those born 
later in the study. Such null results had also been reported 
for other contemporary human cohort studies. The au-
thors suggested that genetic effects on adulthood blood 
pressure likely depend somewhat on early life environ-
ment, which had changed greatly for the Pima popula-
tion, and which is notoriously difficult to account for us-
ing data collected during study assessment in adult co-
horts. This may partially explain why genetic association 
studies of adults frequently fail to replicate across cohorts 
 [38] . Birth year is a widely available and potentially help-
ful proxy for early life environmental variation within a 

population and may aid in understanding the heteroge-
neity of genetic associations across different studies.

  Genetic risk factors for disease are important in part 
because their effects are potentially cumulative over the 
entire life course, from conception onwards. The GRS 
used in this analysis includes SNPs that begin to have sig-
nificant effects on weight gain in infancy and early child-
hood  [39]  and may mediate the association of GRS with 
adulthood adiposity  [40] . It is possible, therefore, that 
some of the GRS-by-birth year interaction effects we re-
port for adults have operated through alterations in early 
growth, which has also changed significantly over the 80 
years of the Fels Longitudinal Study  [41, 42] . 

To our knowledge, there are no other studies demon-
strating a measured genotype-by-birth year interaction ef-
fect on adiposity traits, but there are a number of recently 
published reports that provide support for the findings 
presented here. A quantitative gene-by-birth year interac-
tion was reported in over 250,000 male siblings and twin 
pairs conscripted into the Swedish army who were born 
between 1951 and 1983  [43] . The prevalence of obesity in-
creased from 1 to 5% of the full sample of 1.5 million con-
scripts over that period, and in the subset of relative pairs, 
the total phenotypic variance in BMI increased from 5.7 
among those born in 1951 to 9.9 among those born in 1983. 
Of that total variance, the genetic variance increased from 
4.3 to 7.9, while the unique environmental variance in-
creased only from 1.4 to 2.0, yielding a significant increase 
in the heritability. Circumstantial support is also found in 
the observation that the obesity epidemic was most dra-
matic at the upper tail of the BMI distribution  [44] . Using 
data from the Behavioral Risk Factor Surveillance system, 
Sturm  [45]  reported that the prevalence of adults with a 
BMI >30 approximately doubled between 1985 and 2005, 
while the prevalence of adults with a BMI >50 increased 
9-fold. A recent study in children in the Avon Longitudinal 
Study of Parents and Children (ALSPAC) used a quantile 
regression approach to compare the association of an 
8-SNP obesity GRS on childhood fat mass adjusted for stat-
ure (fat mass index)  [46] , suggesting that the obesity GRS 
had greater influence on fat mass index in children in the 
highest quantiles of adiposity.

  It is likely that typical patterns of epigenetic regulation 
of gene expression are being altered by shifts in the human 
environment and may be partly responsible for the gene-
by-year of birth interactions on obesity we reported above 
 [47] . Epigenetic marks are modifiable by environmental 
factors such as the nutrient content of the diet  [48] , mater-
nal behavior and stress  [49] , and environmental pollutants 
 [50] . At this point, few large-scale human studies of differ-
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ential DNA methylation have been conducted, and the en-
vironmental determinants of histone modification and 
other epigenetic modifications are even less well under-
stood. To date, there have been only a handful of human 
studies examining the relationship of adiposity-related 
traits to DNA methylation; most have examined methyla-
tion near known obesity candidate genes, but epigenome-
wide association analyses are now also beginning to be 
published (reviewed in  [51] ). A number of these have dem-
onstrated association of FTO risk alleles with local CpG 
methylation variation  [52–54] . But, existing studies are 
generally small (n < 200) and cross-sectional, and therefore 
have not had sufficient statistical power or appropriate 
study designs to test the complex interactions among ge-
notype, environment, and DNA methylation variation that 
likely exist. High-throughput DNA methylation bead chip 
technology that simultaneously tests methylation levels in 
hundreds of thousands of sites across the genome  [55]  are 
now being used in large cohort studies which may allow 
such hypotheses to be tested in the near future.

  Our study has a number of strengths, foremost being 
the study design, which incorporates both genotype and 
adiposity phenotype data on related individuals born over 
a very long period of time, beginning in the early 20th cen-
tury. Limitations of the study include a sample size that 
was too small to allow analysis of each SNP individually, 
relying instead on a GRS approach. Our sensitivity analy-
sis indicated that using an unweighted GRS did not bias 
the results regarding the cumulative effect of the SNPs or 
their individual interactions with birth year, but nonethe-
less the results do not shed light on gene-by-birth year 
interaction effects for any particular SNP. Birth year was 
used as an omnibus measure of environmental change rel-
evant for obesity; data on specific individual-level behav-
ioral factors, including diet and activity patterns, among 
other environmental features, were not collected consis-
tently enough over the course of the Fels Longitudinal 
Study to allow us to attribute the birth year effects to par-
ticular sources of variation. Although age and cohort ef-
fects could be examined somewhat independently due to 
the long period over which measurements were taken, it 
is still true that the most recent cohort was younger on 
average at the time of measurement than the oldest birth 
year groups. The expected effect of the negative correla-
tion between age and birth year is to bias the results to-
ward the null hypothesis. This is because in the age range 
examined, adiposity increases with age, and the positive 
secular trend in adiposity (as well as the positive interac-
tion between GRS and year of birth) was evident despite 
the fact that the most recent cohorts had not fully aged 

into their maximum adiposity at the time of this analysis. 
The study included individuals from a particular region of 
the United States who were exclusively of European an-
cestry, and thus the results may not be applicable to other 
racial/ethnic groups or other geographic populations. In 
addition, total body fat mass was not available for most 
individuals born in the early years of the study, as hy-
drodensitometry was not integrated into the study proto-
col until the mid-1960s. However, we did examine anthro-
pometric indicators of adiposity including waist and hip 
circumference and subcutaneous skinfolds, and examined 
markers of central adiposity (WHR and WHtR).

  Conclusions 

 We found a gene-by-environment (birth year) interac-
tion on adiposity traits in adults who grew up and lived in 
markedly different periods, both before and after the onset 
of the obesity epidemic in the United States. The study 
presents to our knowledge the first empirical support for 
the theory long held by obesity researchers that the influ-
ences of genetic variants involved in obesity are ‘un-
masked’ as the environment becomes more obesogenic, 
even over the relatively short historical period of the past 
80 years. An implication of the study is that genetic sus-
ceptibility to obesity may be increasingly evident in mid-
dle- and lower-income countries experiencing far faster 
changes in the nutritional environment than were ob-
served here. Epigenetic modification is a possible mecha-
nism underlying the findings requiring further study.

  Acknowledgements 

 We acknowledge the life-long contributions of the Fels Longi-
tudinal Study participants, and the study staff members, without 
whose commitment and enthusiasm the study could not exist. In 
particular, we would like to thank Frances Tyleshevski for her help 
in the creation of the dataset and the past and present Lifespan 
Health Research Center data collection team for their contribu-
tions. We would also like to thank Dr. Alexander F. Roche, Dr. 
Roger M. Siervogel, and Dr. W. Cameron Chumlea for their long 
and fruitful leadership of the Fels Longitudinal Study, which made 
this unique data source possible. This study was supported by 
grants from the National Institutes of Health: R01 HD012252 and 
R01 HD053685.

  Disclosure Statement 

 The authors have no conflicts of interest.
 

D
ow

nloaded from
 http://karger.com

/hhe/article-pdf/75/2-4/175/2909555/000351742.pdf by guest on 03 D
ecem

ber 2024

http://dx.doi.org/10.1159%2F000351742


 Demerath   /Choh   /Johnson   /Curran   /Lee   /
Bellis   /Dyer   /Czerwinski   /Blangero   /Towne   
 

Hum Hered 2013;75:175–185
DOI: 10.1159/000351742

184

 References 

  1 Wilding J: Are the causes of obesity primarily 
environmental? Yes. BMJ 2012;   345:e5843. 

  2 Frayling TM: Are the causes of obesity pri-
marily environmental? No. BMJ 2012;  
 345:e5844. 

  3 Flegal KM, Carroll MD, Kuczmarski RJ, John-
son CL: Overweight and obesity in the United 
States: prevalence and trends, 1960–1994. Int 
J Obes Relat Metab Disord 1998;   22:   39–47. 

  4 Popkin BM, Adair LS, Ng SW: Global nutri-
tion transition and the pandemic of obesity in 
developing countries. Nutr Rev 2012;   70:   3–21. 

  5 McAllister EJ, Dhurandhar N V, Keith SW, 
Aronne LJ, Barger J, Baskin M, Benca RM, 
Biggio J, Boggiano MM, Eisenmann JC, Elo-
beid M, Fontain KR, Gluckman P, Hanlon 
EC, Katzmarzyk P, Pietrobeilli A, Redden DT, 
Ruden DM, Wang C, Waterland RA, Wright 
SM, Allison DB: Ten putative contributors to 
the obesity epidemic. Crit Rev Food Sci Nutr 
2009;   49:   868–913. 

  6 Wells JCK: The evolution of human adiposity 
and obesity: where did it all go wrong? Dis 
Model Mech 2012;   5:   595–607. 

  7 Stunkard AJ, Harris JR, Pedersen NL, Mc-
Clearn GE: The body-mass index of twins 
who have been reared apart. N Engl J Med 
1990;   322:   1483–1487. 

  8 Allison D, Kaprio J, Korkeila M, Koskenvuo 
M, Neale M, Hayakawa K: The heritability of 
body mass index among an international 
sample of monozygotic twins reared apart. Int 
J Obes Relat Metab Disord 1996;   20:   501–506. 

  9 Luke A, Guo X, Adeyemo AA, Wilks R, For-
rester T, Lowe W, Comuzzie AG, Martin LJ, 
Zhu X, Rotimi CN, Cooper RS: Heritability of 
obesity-related traits among Nigerians, Ja-
maicans and US black people. Int J Obes Relat 
Metab Disord 2001;   25:   1034–1041. 

 10 Ravussin E, Bouchard C: Human genomics 
and obesity: finding appropriate drug targets. 
Eur J Pharmacol 2000;   410:   131–145. 

 11 Kilpelainen T, Qi L, Brage S, Sharp SJ, Sone-
stedt E, et al: Physical activity attenuates the 
influence of FTO variants on obesity risk: a 
meta-analysis of 218,166 adults and 19,268 
children. PLoS Med 2011;   8:e1001116. 

 12 Frayling TM, Timpson NJ, Weedon MN,
Zeggini E, Freathy RM, et al: A common vari-
ant in the FTO gene is associated with body 
mass index and predisposes to childhood and 
adult obesity. Science 2007;   316:   889–894. 

 13 Scuteri A, Sanna S, Chen WM, Uda M, Albai 
G, Strait J, Najjar S, Nagaraja R, Orru M, Us-
ala G, Dei M, Lai S, Maschio A, Busonero F, 
Mulas A, Ehret GB, Fink AA, Weder AB, Coo-
per RS, Galan P, Chakravarti A, Schlessinger 
D, Cao A, Lakatta E, Abesasis GR: Genome-
wide association scan shows genetic variants 
in the FTO gene are associated with obesity-
related traits. PLoS Genet 2007;   3:e115. 

 14 Dina C, Meyre D, Gallina S, Durand E, Kör-
ner A, Jacobson P, Carlsson LM, Kiess W, Va-
tin V, Lecoeur C, Delphanque J, Valiant E, 
Pattou F, Ruiz J, Weill J, Levy-Marchai C, 
Horber F, Potoczna N, Hercberg S, Le Stunff 
C, Bougneres P, Kovacs P, Marre M, Balkau B, 
Cauchi S, Chevre JC, Froguel P: Variation in 
FTO contributes to childhood obesity and se-
vere adult obesity. Nat Gen 2007;   39:   724–726. 

 15 Rampersaud E, Pollin TI, Fu M, Shen H, 
O’Connell JR, Duchame JL, Hines S, Sack P, 
Naglieri R, Shuldiner AR, Snitker S: Physical 
activity and the association of common FTO 
gene variants with body mass index and obe-
sity. Arch Intern Med 2008;   168:   1791–1797. 

 16 Demerath EW, Lutsey P, Monda K, Pankow 
J, Kao L, Bressler J, North K, Folsom A: Inter-
action of FTO and physical activity level on 
adiposity in African-American and Europe-
an-American adults: the ARIC Study. Obesity 
(Silver Spring) 2011;   19:   1866–1872. 

 17 Velez Edwards D, Naj A, Monda K, North K, 
Neuhouser M, Magvanjav O, Kusimo I, Vito-
lins MZ, Manson JE, O’Sullivan MJ, Ramper-
saud E, Edwards TL: Gene-environment in-
teractions and obesity traits among post-
menopausal African-American and Hispanic 
women in the Women’s Health Initiative 
SHARe Study. Hum Genet 2013;   132:   323–
336. 

 18 Johnson W, Choh AC, Curren J, Czerwinski 
SA, Bellis C, Dyer TD, Blangero J, Towne B, 
Dmeerath EW: Genetic risk for earlier men-
arche also influences peri-pubertal body 
mass index. Am J Phys Anthropol 2013;   150:  
 10–20. 

 19 Grinker JA, Tucker K, Vokonas PS, Rush D: 
Body habitus changes among adult males 
from the normative aging study: relations to 
aging, smoking history and alcohol intake. 
Obes Res 1995;   3:   435–446. 

 20 Roche A: Growth, Maturation, and Body 
Composition: The Fels Longitudinal Study, 
1929–1991. New York, NY, Cambridge Uni-
versity Press, 1992. 

 21 Hamill PV, Drizd TA, Johnson CL, Reed RB, 
Roche AF: NCHS Growth Curves for Chil-
dren. Birth–18 Years. Series 11, Number 165. 
DHEW Publication No. (PHS) 78–1650. Hy-
attsville, MD, 1977. 

 22 Demerath EW, Li J, Sun SS, Chumlea WC, 
Remsberg KE, Czerwinski SA, Towne B, Sier-
vogel RM: Fifty-year trends in serial body 
mass index during adolescence in girls: the 
Fels Longitudinal Study. Am J Clin Nutr 2004;  
 80:   441–446. 

 23 Demerath EW, Towne B, Chumlea WC, Sun 
SS, Czerwinski SA, Remsberg KE, Siervogel 
RM: Recent decline in age at menarche: the 
Fels Longitudinal Study. Am J Hum Biol 
2004;   16:   453–457. 

 24 Lohman T, Roche A, Martorell R (eds): An-
thropometric Standardization Reference 
Manual. Champaign, Human Kinetics Pub-
lishers Inc, 1988. 

 25 Sobel E, Lange K: Descent graphs in pedigree 
analysis: applications to haplotyping, location 
scores, and marker-sharing statistics. Am J 
Hum Genet 1996;   58:   1323–1337. 

 26 Sobel E, Papp JC, Lange K: Detection and in-
tegration of genotyping errors in statistical 
genetics. Am J Hum Genet 2002;   70:   496–508. 

 27 Sobel E, Sengul H, Weeks DE: Multipoint es-
timation of identity-by-descent probabilities 
at arbitrary positions among marker loci on 
general pedigrees. Hum Hered 2001;   52:   121–
131. 

 28 Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR: 
MaCH: using sequence and genotype to esti-
mate haplotypes and unobserved genotypes. 
Genet Epidemiol 2010;   34:   816–834. 

 29 Li Y, Willer CJ, Sanna S, Abecasis GR: Geno-
type imputation. Annu Rev Genomics Hum 
Genet 2009;   10:   387–406. 

 30 Abecasis GR, Cherny SS, Cookson WO, Car-
don LR: Merlin – rapid analysis of dense ge-
netic maps using sparse gene flow trees. Nat 
Genet 2002;   30:   97–101. 

 31 Manolio TA, Collins FS, Cox NJ, Goldstein 
DB, Hindorff LA, Hunter DJ, McCarthy MI, 
Ramos EM, Cardon LR, Chakravarti A, Cho 
JH, Guttmacher AE, Kong A, Kruglyak L, 
Mardis E, Rotimi CN, Slatkin M, Valle D, 
Whittemore AS, Boehnke M, Clark AG, 
Eichler EE, Gibson G, Haines JL, Mackay TF, 
McCarroll SA, Visscher PM: Finding the 
missing heritability of complex diseases. Na-
ture 2009;   461:   747–753. 

 32 Den Hoed M, Ekelund U, Brage S, Grontved 
A, Zhao JH, Sharp SJ, Ong KK, Wareham JN, 
Loos RJ: Genetic susceptibility to obesity and 
related traits in childhood and adolescence. 
Diabetes 2010;   59:   2980–2988. 

 33 Speliotes EK, Willer CJ, Berndt SI, Monda KL, 
Thorleifsson G, et al: Association analyses of 
249,796 individuals reveal 18 new loci associ-
ated with body mass index. Nat Genet 2010;  
 42:   937–948. 

 34 Almasy L, Blangero J: Multipoint quantita-
tive-trait linkage analysis in general pedi-
grees. Am J Hum Genet 1998;   62:   1198–1211. 

 35 Boerwinkle E, Chakraborty R, Sing CF: The 
use of measured genotype information in the 
analysis of quantitative phenotypes in man. 
Ann Hum Genet 1986;   50:   181–194. 

 36 Price AL, Patterson NJ, Plenge RM, Weinblatt 
ME, Shadick NA, Reich D: Principal compo-
nents analysis corrects for stratification in ge-
nome-wide association studies. Nat Genet 
2006;   38:   904–909. 

 37 Zhai F, Wang H, Du S, He Y, Wang Z, Ge K, 
Popkin BM: Prospective study on nutrition 
transition in China. Nutr Rev 2009;   67:S56–S61. 

 38 Franks PW, Knowler WC, Nair S, Koska J, Lee 
YH, Lindsay RS, Walker BR, Looker HC, Per-
mana PA, Tataranni PA, Hanson RL: Interac-
tion between an 11betaHSD1 gene variant 
and birth era modifies the risk of hyperten-
sion in Pima Indians. Hypertension 2004;   44:  
 681–688. 

D
ow

nloaded from
 http://karger.com

/hhe/article-pdf/75/2-4/175/2909555/000351742.pdf by guest on 03 D
ecem

ber 2024

http://dx.doi.org/10.1159%2F000351742


 Gene-by-Birth Year Interaction Hum Hered 2013;75:175–185
DOI: 10.1159/000351742

185

 39 Elks CE, Loos RJF, Sharp SJ, Langenberg C, 
Ring SM, Timpson NJ, Ness AR, Davey Smith 
G, Dunger DB, Wareham NJ, Ong KK: Ge-
netic markers of adult obesity risk are associ-
ated with greater early infancy weight gain 
and growth. PLoS Med 2010;7:e1000284. 

 40 Belsky DW, Moffitt TE, Houts R, Bennett GG, 
Biddle AK, Blumenthal JA, Evans JP, Har-
rington H, Sugden K, Williams B, Poulton R, 
Caspi A: Polygenic risk, rapid childhood 
growth, and the development of obesity. Arch 
Pediatr Adolesc Med 2012;   166:   515–521. 

 41 Johnson W, Choh AC, Soloway LE, Czerwin-
ski SA, Towne B, Demerath EW: Eighty-year 
trends in infant weight and length growth: the 
Fels Longitudinal Study. J Pediatr 2012;   160:  
 762–768. 

 42 Johnson W, Soloway LE, Erickson D, Choh 
AC, Lee M, Chumlea WC, Siervogel RM,
Czerwinski SA, Towne B, Demerath EW: A 
changing pattern of childhood BMI growth 
during the 20th century: 70 y of data from the 
Fels Longitudinal Study. Am J Clin Nutr 2012;  
 95:   1136–1143. 

 43 Rokholm B, Silventoinen K, Tynelius P, Gam-
borg M, Sørensen TI, Rasmussen F: Increas-
ing genetic variance of body mass index dur-
ing the Swedish obesity epidemic. PloS One 
2011;   6:e27135. 

 44 Flegal KM, Troiano RP: Changes in the distri-
bution of body mass index of adults and chil-
dren in the US population. Int J Obes Relat 
Metab Disord 2000;   24:   807–818. 

 45 Sturm R: Increases in morbid obesity in the 
USA: 2000–2005. Public Health 2007;   121:  
 492–496. 

 46 Beyerlein A, Von Kries R, Ness AR, Ong KK: 
Genetic markers of obesity risk: stronger as-
sociations with body composition in over-
weight compared to normal-weight children. 
PLoS One 2011;   6:e19057. 

 47 Latham KE, Sapienza C, Engel N: The epigen-
etic lorax: gene-environment interactions in 
human health. Epigenomics 2012;   4:   383–402. 

 48 Dolinoy DC, Weidman JR, Waterland RA, 
Jirtle RL: Maternal genistein alters coat color 
and protects Avy mouse offspring from obe-
sity by modifying the fetal epigenome. Envi-
ron Health Perspect 2006;   114:   567–572. 

 49 Weaver IC, Cervoni N, Champagne FA, 
D’Alessio AC, Sharma S, Seckl JR, Dymov S, 
Szyf M, Meany MJ: Epigenetic programming 
by maternal behavior. Nat Neurosci 2004;   7:  
 847–854. 

 50 Armstrong L: Epigenetic control of embry-
onic stem cell differentiation. Stem Cell Rev 
2012;   8:   67–77. 

 51 Drong AW, Lindgren CM, McCarthy MI: The 
genetic and epigenetic basis of type 2 diabetes 
and obesity. Clin Pharmacol Ther 2012;   92:  
 707–715. 

 52 Almén MS, Jacobsson JA, Moschonis G, 
Benedict C, Chrousos GP, Fredriksson R, 
Schioth HB: Genome wide analysis reveals as-
sociation of a FTO gene variant with epigen-
etic changes. Genomics 2012;   99:   132–137. 

 53 Bell CG, Finer S, Lindgren CM, Wilson GA, 
Rakyan VK, Teschendorff AE, Akan P, Stupka 
E, Down TA, Prokoenko I, Morison IM, Mill 
J, Pidsley R, International Type 2 Diabetes 1q 
Consortium, Deiokuas P, Frayling TM, Hat-
tersley AT, McCarthy MI, Beck S, Hitman 
GA: Integrated genetic and epigenetic analy-
sis identifies haplotype-specific methylation 
in the FTO type 2 diabetes and obesity suscep-
tibility locus. PLoS One 2010;   5:e14040. 

 54 Toperoff G, Aran D, Kark JD, Rosenberg M, 
Dubnikov T, Nissan B, Binstein J, Friedlander 
Y, Levy-Lahad E, Glaser B, Heilman A: Ge-
nome-wide survey reveals predisposing dia-
betes type 2-related DNA methylation varia-
tions in human peripheral blood. Hum Mol 
Genet 2012;   21:   371–383. 

 55 Sandoval J, Heyn H, Moran S, Serra-Musach 
J, Pujana MA, Bibikova M, Esteller M: Valida-
tion of a DNA methylation microarray for 
450,000 CpG sites in the human genome. Epi-
genetics 2011;   6:   692–702. 

  

D
ow

nloaded from
 http://karger.com

/hhe/article-pdf/75/2-4/175/2909555/000351742.pdf by guest on 03 D
ecem

ber 2024

http://dx.doi.org/10.1159%2F000351742

	CitRef_1: 
	CitRef_2: 
	CitRef_3: 
	CitRef_4: 
	CitRef_5: 
	CitRef_6: 
	CitRef_7: 
	CitRef_8: 
	CitRef_9: 
	CitRef_10: 
	CitRef_11: 
	CitRef_12: 
	CitRef_13: 
	CitRef_14: 
	CitRef_15: 
	CitRef_16: 
	CitRef_17: 
	CitRef_18: 
	CitRef_19: 
	CitRef_22: 
	CitRef_23: 
	CitRef_25: 
	CitRef_26: 
	CitRef_27: 
	CitRef_28: 
	CitRef_29: 
	CitRef_30: 
	CitRef_31: 
	CitRef_32: 
	CitRef_33: 
	CitRef_34: 
	CitRef_35: 
	CitRef_36: 
	CitRef_37: 
	CitRef_38: 
	CitRef_39: 
	CitRef_40: 
	CitRef_41: 
	CitRef_42: 
	CitRef_43: 
	CitRef_44: 
	CitRef_45: 
	CitRef_46: 
	CitRef_47: 
	CitRef_48: 
	CitRef_49: 
	CitRef_50: 
	CitRef_51: 
	CitRef_52: 
	CitRef_53: 
	CitRef_54: 
	CitRef_55: 


