Objectives: In genomics, variable selection and prediction accounting for the complex interrelationships between explanatory variables represent major challenges. Tree-based methods are powerful alternatives to classical regression models. We have recently proposed the generalized, partially linear, tree-based regression (GPLTR) procedure that integrates the advantages of generalized linear regression (allowing the incorporation of confounding variables) and of tree-based models. In this work, we use bagging to address a classical concern of tree-based methods: their instability. Methods: We present a bagged GPLTR procedure and three scores for variable importance. The prediction accuracy and the performance of the scores are assessed by simulation. The use of this procedure is exemplified by the analysis of a lung cancer data set. The aim is to predict the epidermal growth factor receptor (EGFR) mutation based on gene expression measurements, taking into account the ethnicity (confounder variable) and perform variable selection. Results: The procedure performs well in terms of prediction accuracy. The scores differentiate predictive variables from noise variables. Based on a lung adenocarcinoma data set, the procedure achieves good predictive performance for EGFR mutation and selects relevant genes. Conclusion: The proposed bagged GPLTR procedure performs well for prediction and variable selection.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.