Abstract
A primary purpose of statistical analysis in genetics is the measurement of the strength of evidence for or against hypotheses. As with any type of measurement, a properly calibrated measurement scale is necessary if we want to be able to meaningfully compare degrees of evidence across genetic data sets, across different types of genetic studies and/or across distinct experimental modalities. In previous papers in this journal and elsewhere, my colleagues and I have argued that geneticists ought to care about the scale on which statistical evidence is measured, and we have proposed the Kelvin temperature scale as a template for a context-independent measurement scale for statistical evidence. Moreover, we have claimed that, mathematically speaking, evidence and temperature may be one and the same thing. On first blush, this might seem absurd. Temperature is a property of systems following certain laws of nature (in particular, the 1st and 2nd Law of Thermodynamics) involving very physical quantities (e.g., energy) and processes (e.g., mechanical work). But what do the laws of thermodynamics have to do with statistical systems? Here I address that question.