Five monozygotic twin pairs were submitted to a 10-week isokinetic strength training program and biochemical characteristics measured before and after training to determine the role of heredity in skeletal muscle adaptation, while 5 unrelated sedentary subjects served as control group. Experimental subjects performed twice 3 series of 5 bilateral reciprocal alternating knee flexions and extensions at a velocity of 90 °/s 5 times per week. Before and after the training period, for each subject, the peak muscular torque output was measured at the same velocity and the vastus lateralis muscle was biopsied for biochemical determinations. No significant change was observed in the control group. Training increased peak muscular torque output by 24%. The activities of hexokinase, malate dehydrogenase and 3-hydroxyacyl CoA dehydrogenase also increased significantly by 28, 26 and 38%, respectively. Interindividual variations in the response of these variables to training were noted but these were shown to be independent of the genotype. No overall effect of training was observed for oxoglutarate dehydrogenase activity (OGDH). However, changes were seen in individual pairs of twins and these were in opposite directions in some pairs compared to others, thus explaining the absence of a general training effect. Significant intrapair resemblance in the training response was present for OGDH (r = 0.76), indicating that the sensitivity to isokinetic strength training for OGDH was highly variable, not random and probably genetically determined.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.