1.
Al Nabhani, Z., Dulauroy, S., Marques, R., Cousu, C., Al Bounny, S., DejardinSparwasser, F,T., Berard, M., Cerf-Bensussan, N., & Eberl, G. (2019). A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity, 50(5), 1276–1288.e1275.
2.
Alexander, M., & Turnbaugh, P.J. (2020). Deconstructing mechanisms of diet-microbiome-immune interactions. Immunity, 53(2), 264–276.
3.
Ardeshir, A., Narayan, N. R., Méndez-Lagares, G., Lu, D., Rauch, M., Huang, Y., Van Rompay, K. K., Lynch, S.V., & Hartigan-O’Connor, D. J. (2014). Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Science Translational Medicine, 6(252), 252ra120.
4.
Aubret, F., & Shine, R. (2009). Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Current Biology, 19, 1932–1936.
5.
Baldwin, R. L., IV, & Conner, E. E. (2017). Rumen function and development. Veterinary Clinics: Food Animal Practices, 33, 427–439.
6.
Barker, D. J. P. (1998). In utero programming of chronic disease. Clinical Science, 95(2), 115–128.
7.
Barresi, M. J., & Gilbert, S. F. (2019). Developmental Biology (12 edn). Oxford University Press.
8.
Beldade, P., Mateus, A. R., & Keller, R. A. (2011). Evolution and molecular mechanisms of adaptive developmental plasticity. Molecular Ecology, 20(7), 1347–1363.
9.
Blaser, M. (2014). Missing Microbes: How Killing Bacteria Creates Modern Plagues. Oneworld Publications.
10.
BonderKurilshikov, M. J,A., Tigchelaar, E. F., Mujagic, Z., Imhann, F., Vila, A. V., Deelen, P., Vatanen, T., Schirmer, M., Smeekens, S. P., Zhernakova, D. V., Jankipersadsing, S. A., Jaeger, M., Oosting, M., Cenit, M. C., Masclee, A. A., Swertz, M. A., Li, Y., Kumar, V., & Zhernakova, A. (2016). The effect of host genetics on the gut microbiome. Nature Genetics, 48(11), 1407–1412.
11.
Brakefield, P. M., & Frankino, W. A. (2009). Polyphenisms in Lepidoptera: Multidisciplinary approaches to studies of evolution. In D.Whitman (Ed), Phenotypic Plasticity in Insects: Mechanisms and Consequences (pp. 281–312). Science Publishers.
12.
Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16050–16055.
13.
Buffington, S. A., Di Prisco, G. V., Auchtung, T. A., Ajami, N. J., Petrosino, J. F., & Costa-Mattioli, M. (2016). Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell, 165(7), 1762–1775.
14.
Carmody, R. N., Gerber, G.K., Luevano, J. M., Jr., Gatti, D. M., Somes, L., Svenson, K. L, & Turnbaugh, P. J. (2015). Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe, 17(1), 72–84.
15.
Chen, H. J., Antonson, A. M., Rajasekera, T. A., Patterson, J. M., Bailey, M. T, & Gur, T.L. (2020). Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Translational Psychiatry, 10(1), 191.
16.
Chiu, L., & Eberl, G. (2016). Microorganisms as scaffolds of host individuality: an eco-immunity account of the holobiont. Biology and Philosophy, 31(6), 819–837.
17.
Chiu, L., & Gilbert, S. F. (2020). Niche construction and the transition to herbivory: Phenotype switching and the origination of new nutritional modes. In H.Levine, M.Jolly, P.Kulkarni, & V.Nanjundiah (Eds), Phenotype Switching: Implications in Biology and Medicine (pp. 459–482). Elsevier.
18.
Chiu, L., Bazin, T., Truchetet, M.E., Schaeverbeke, T., Delhaes, L., & Pradeu, T. (2017). Protective microbiota: From localized to long-reaching co-Immunity. Frontiers in Immunology, 8, 1678.
19.
Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 18(6), 666–73.
20.
Clausen, D. S., & Willis, A. D. (2022). Evaluating replicability in microbiome data. Biostatistics, 23(4), 1099–1114.
21.
Conrad, E., Stein, R., & Hunter, C. S. (2014). Revealing transcription factors during human pancreatic β cell development. Trends in Endocrinology and Metabolism, 25(8), 407–14.
22.
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J., & Relman, D. A. (2012). The application of ecological theory toward an understanding of the human microbiome. Science, 336(6086), 1255–1262.
23.
Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., BastiaanssenBoehme, T. F. S., Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E., Jaggar, M., Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas, E, & Dinan, T. G. (2019). The microbiota-gut-brain axis. Physiological Reviews, 99(4), 1877–2013.
24.
David, L. A., Maurice, C. F., CarmodyGootenberg, R. ND. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–63.
25.
de Muinck, E. J., & Trosvik, P. (2018). Individuality and convergence of the infant gut microbiota during the first year of life. Nature Communications, 9(1), 2233.
26.
De Vadder, F., Grasset, E., Mannerås Holm, L., Karsenty, G., Macpherson, A. J., Olofsson, L. E., & Bäckhed, F. (2018). Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6458–6463.
27.
Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2014). Microbiota is essential for social development in the mouse. Molecular Psychiatry, 19(2), 146–148.
28.
Diamond, J. (1991). Pearl Harbor and the emperor’s physiologists. Natural History, 1991(12), 2–7.
29.
Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al., Hibberd, M. L., Forssberg, H., & Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3047–3052.
30.
Dobber, R., Hertogh-Huijbregts, A., Rozing, J., Bottomly, K., & Nagelkerken, L. (1992). The involvement of the intestinal microflora in the expansion of CD4+ T cells with a naive phenotype in the periphery. Developmental Immunology, 2(2), 141–150.
31.
Dohnalová, L., Lundgren, P., Carty, J. R. E., Goldstein, N., Wenski, S. L., Nanudorn, P., Thiengmag, S., Huang, K. P., Litichevskiy, L., Descamps, H. C., Chellappa, K., Glassman, A., Kessler, S., Kim, J., Cox, T. O., Dmitrieva-Posocco, O., Wong, A. C., Allman, E. L., Ghosh, S., … Thaiss, C. A. (2022). A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature, 612(7941), 739–747.
32.
Dunbar, H. E., Wilson, A. C., Ferguson, N. R., & Moran, N. A. (2007). Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Bioogyl, 5(5), e96.
33.
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C., & Barker, D. J. (2001). Early growth and coronary heart disease in later life: Longitudinal study. British Medical Journa,l, 322(7292), 949–953.
34.
Erny, D., Dokalis, N., Mezö, C., Castoldi, A., Mossad, O., Staszewski, O., Frosch, M., Villa, M., Fuchs, V., Mayer, A., Neuber, J., Sosat, J., Tholen, S., Schilling, O., Vlachos, A., Blank, T., Gomez de Agüero, M., Macpherson, A. J., Pearce, E. J., & Prinz, M. (2021). Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metabolism, 33(11), 2260–2276.e7.
35.
Ferretti, P., Pasolli, E., Tett, A., Asnicar, F., Gorfer, V., Fedi, S., Armanini, F., Truong, D. T., Manara, S., Zolfo, M., Beghini, F., Bertorelli, R., De Sanctis, V., Bariletti, I., Canto, R., Clementi, R., Cologna, M., Crifò, T., Cusumano, G ., & Segata, N. (2018). Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe, 24(1), 133–145.e5.
36.
Formosinho, J., Bencard, A., & Whiteley, L. (2022). Environmentality in biomedicine: Microbiome research and the perspectival body. Studies in the History and Philosophy of Science, 91, 148–158.
37.
Fung, T. C., Olson, C.A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145–155.
38.
Gawne, R., McKenna, K. Z., & Nijhout, H. F. (2018). Unmodern Synthesis: Developmental hierarchies and the origin of phenotypes. Bioessays, 40(1), 1600265.
39.
Ge, C., Ye, J., Zhang, H., Zhang, Y., Sun, W., Sang, Y., Capel, B., & Qian, G. (2017). Dmrt1 induces the male pathway in a turtle species with temperature-dependent sex determination. Development, 144(12), 2222–2233.
40.
Ge, C., Ye, J., Weber, C., Sun, W., Zhang, H., Zhou, Y., Cai, C., Qian, G., & Capel, B. (2018). The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science, 360(6389), 645–648.
41.
Gilbert, S. F. (2001). Ecological developmental biology: Developmental biology meets the real world. Developmental Biology, 233, 1–12.
42.
Gilbert, S. F. (2003). The role of predator-induced polyphenism in the evolution of cognition: A Baldwinian speculation. In B. H.Weber, & D. J.Depew (Eds), Evolution and Learning: The Baldwin Effect Reconsidered (pp. 235–252). MIT Press.
43.
Gilbert, S. F. (2018). Perspective: Rethinking parts and wholes. In S.Gissis, E.Lamm, & A.Shavit (Eds), Landscapes of Collectivity In The Life Sciences (pp. 123–132). Cambridge, MIT Press.
44.
Gilbert, S. F. (2019). Evolutionary transitions revisited: holobiont evo-devo. Journal of Experimental Zoology Molecular and Deelopmental Biology, 332(8), 307–314.
45.
Gilbert, S. F. (2021). Como era en umpricipio, ahotra y siempre, por los siglos de los siglos. In L.Pietroiusti, & F. G.Dory (Eds), Microhabitable (pp. 34–45). Matedero.
46.
Gilbert, S. F., & Borish, S. (1997). How cells learn, how cells teach: Induction and education in the body. In A.Reninger, & E.Amsel (Eds), Change and Development: Issues of Theory, Method, and Application Lawrence Erlbaum (pp. 61–75).
47.
Gilbert, S. F., & Epel, D. (2009). Ecological Developmental Biology: The Environmental Regulation of Development, Health, and Evolution. Sinauer Associates.
48.
Gilbert, S. F., & Tauber, A. I. (2016). Rethinking individuality: The dialectics of the holobiont. Biology and Philosophy, 31(6), 839–853.
49.
Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. Quarterly Review of Biology, 87(4), 325–341.
50.
Gilbert, S. F., Bosch, T. C, & Ledón-Rettig, C. (2015). Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nature Reviews Genetics, 16(10), 611–622.
51.
Gluckman, P. D., & Hanson, M. A. (2005). The Fetal Matrix: Evolution, Development, and Disease. Cambridge University Press.
52.
Gluckman, P. D., Hanson, M. A., & Spencer, H. G. (2005). Predictive adaptive responses and human evolution. Trends in Ecology and Evolution, 20(10), 527–533.
53.
Gottlieb, G. (1991a). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27(1), 4–13.
54.
Gottlieb, G. (1991b). Individual Development and Evolution: The Genesis of Novel Behavior. Oxford University Press.
55.
Gottlieb, G. (1995). Some conceptual deficiencies in ‘developmental’ behavior genetics. Human Development, 38(3), 131–141.
56.
Gottlieb, G. (1998). Normally occurring environmental and behavioral influences on gene activity: From central dogma to probabilistic epigenesis. Psychological Review, 105(4), 792–802.
57.
Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumont, M., Van Treuren, W., Knight, R., Bell, J. T, Spector, T. D., Clark, A. G., & Ley, R. E. (2014). Human genetics shape the gut microbiome. Cell, 159(4), 789–799.
58.
Gould, S. J. (1997). Individuality: cloning and the discomfiting cases of Siamese twins. The Sciences, 37(5), 14–16.
59.
Gumusoglu, S. B., Fine, R. S., Murray, S. J., Bittle, J. L., & Stevens, H. E. (2017). The role of IL-6 in neurodevelopment after prenatal stress. Brain, Behavior and Immunity, 65, 274–283.
60.
Hales, C. N., & Barker, D. J. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35(7), 595–601.
61.
Hall, B. K. (2001). Organic selection: Proximate environmental effects on the evolution of morphology and behavior. Biology and Philosophy, 16(2), 215–236.
62.
Hanski, I., Von Hertzen, L., Fyhrquist, N., Koskinen, K., Torppa, K., Laatikainen, T., Karisola, P., AuvinenPaulin, P.L., Mäkelä, M.J., Vartiainen, E., Kosunen, T. U., Alenius, H., & Haahtela, T. (2012). Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8334–8339.
63.
Harmsen, H. J. M., Wildeboer–Veloo, A. C. M., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G., & Welling, G. W. (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. Journal of Pediatric Gastroenterology and Nutrition, 30(1), 61–67.
64.
Henrick, B. M., RodriguezLakshmikanth, L,T., Pou, C., Henckel, E., Arzoomand, A., Olin, A., Wang, J., Mikes, J., Tan, Z., Chen, Y., Ehrlich, A. M., Bernhardsson, A. K., Mugabo, C. H., Ambrosiani, Y., Gustafsson, A., Chew, S., Brown, H. K., Prambs, J., & Brodin, P. (2021). Bifidobacteria-mediated immune system imprinting early in life. Cell, 184(15), 3884–3898.e11.
65.
Hill, J. H., FranzosaHuttenhower, E. A,C., & Guillemin, K. (2016). A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife, 5, e20145.
66.
Hoban, A., Stilling, R., Moloney, G., Shanahan, F., Dinan, T.G., Cryan, J. F., & Clarke, G. (2018). The microbiome regulates amygdala-dependent fear recall. Molecular Psychiatry, 23(5), 1134–1144.
67.
Hu, Y. & Albertson, R. C. (2017). Baby fish working out: an epigenetic source of adaptive variation in the cichlid jaw. Proceedings of the Royal Society B; Biological Sciences, 284(1860), 20171018.
68.
Kang, D. W., Adams, J. B., Coleman, D. M., Pollard, E. L., Maldonado, J., McDonough-Means, S., Caporaso, J. G., & Krajmalnik-Brown, R. (2019). Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Scientific Reports, 9(1), 5821.
69.
Kennedy, K. M., de Goffau, M. C., Perez-Muñoz, M.E., Arrieta, M. C., Bäckhed, F., Bork, P., Braun, T., Bushman, F. D., Dore, J., de Vos, W. M., Earl, A. M., Eisen, J. A., Elovitz, M.A., Ganal-Vonarburg, S. C., Gänzle, M. G., Garrett, W. S., Hall, L. J., Hornef, M. W., Huttenhower, C., Walter, J., Lebeer, S., Macpherson, A. J., Massey, R. C., McHardy, A. C., Koren, O., Lawley, T. D., Ley, R. E., O’Mahony, L., O’Toole, P. W., Pamer, E. G., Parkhill, J., Raes, J., Rattei, T., Salonen, A., Segal, E., Segata, N., Shanahan, F., Sloboda, D. M., Smith, G. C. S., Sokol, H., Spector, T. D., Surette, M. G., Tannock, G. W., Walker, A. W., … Yassour, M. (2023). Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature, 613(7945), 639–649.
70.
Khosravi, A., Yáñez, A., Price, J.G., Chow, A., Merad, M., Goodridge, H.S., & Mazmanian, S. K. (2014). Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe, 15(3), 374–381.
71.
Kieper, W. C., Troy, A., Burghardt, J. T., Ramsey, C., Lee, J. Y., Jiang, H. Q., Dummer, W., Shen, H., Cebra, J. J., & Surh, C. D. (2005). Recent immune status determines the source of antigens that drive homeostatic T cell expansion. Journal of Immunology, 174(6), 3158–3163.
72.
Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K. & Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proceedings National Academy of Sciences USA, 109, 8618–8623.
73.
Kim, S., Kim, H., Yim, Y. S., Ha, S., Atarashi, K., Tan, T. G., Longman, R. S., Honda, K., Littman, D.R., Choi, G. B., & Huh, J. R. (2017). Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature, 549(7673), 528–532.
74.
Kimura, I., Miyamoto, J., Ohue-Kitano, R., Watanabe, K., Yamada, T., Onuki, M., Aoki, R., Isobe, Y., Kashihara, D., Inoue, D., Inaba, A., Takamura, Y., Taira, S., Kumaki, S., Watanabe, M., Ito, M., Nakagawa, F., Irie, J., Kakuta, H., … Hase, K. (2020). Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science, 367(6481), eaaw8429.
75.
Kirjavainen, P.V., Karvonen, A. M., Adams, R.I., Täubel, M., Roponen, M., Tuoresmäki, P., Loss, G., Jayaprakash, B., Depner, M., Ege, M. J., Renz, H., Pfefferle, P.I., Schaub, B., Lauener, R., Hyvärinen, A., Knight, R., Heederik, D. J. J., von Mutius, E., & Pekkanen, J. (2019). Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nature Medicine, 25(7), 1089–1095.
76.
Koren, O., Goodrich, J., Cullender, T., Spor, A., Laitinen, K., Bäckhed, H., Gonzalez, A., Werner, J., Angenent, L., Knight, R., Bäckhed, F., Isolauri, E., Salminen, S., & Ley, R.E. (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cel,l, 150(3), 470–480.
77.
Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., Demirkan, A., Le Roy, C. I., Raygoza Garay, J. A., Finnicum, C.T., Liu, X., Zhernakova, D. V., Bonder, M. J., Hansen, T. H., Frost, F., Rühlemann, M. C., Turpin, W., Moon, J. Y., Kim, H. N., Lüll, K., Zhernakova, A., Shah, S. A., Fornage, M., Szopinska-Tokov, J., Wallen, Z. D., Borisevich, D., Agreus, L., Andreasson, A., Bang, C., Bedrani, L., Bell, J. T., Bisgaard, H., Boehnke, M., Boomsma, D. I., Burk, R. D., Claringbould, A., Croitoru, K., Davies, G. E., van Duijn, C. M., Duijts, L., Falony, G., Fu, J., van der Graaf, A., Homuth, G., Hughes, D. A., Ijzerman, R. G., Jackson, M. A., Jaddoe, V. W. V., Joossens, M., Jørgensen, T., Keszthelyi, D., Knight, R., Laakso, M., Laudes, M., Launer, L. J., Lieb, W., Lusis, A. J., Masclee, A. A. M., Moll, H. A., Mujagic, Z., Qibin, Q., Rothschild, D., Shin, H., Sørensen, S. J., Steves, C. J., Thorsen, J., Timpson, N. J., Tito, R. Y., Vieira-Silva, S., Völker, U., Völzke, H., Võsa, U., Wade, K. H., Walter, S., Watanabe, K., Weiss, S., Weiss, F. U., Weissbrod, O., Westra, H. J., Willemsen, G., Payami, H., Jonkers, D. M. A. E., Arias Vasquez, A., de Geus, E. J. C., Meyer, K. A., Stokholm, J., Segal, E., Org, E., Wijmenga, C., Kaplan, R. C., Spector, T. D., Uitterlinden, A. G., Rivadeneira, F., Franke, A., Lerch, M. M., Franke, L., Sanna, S., D'Amato, M., Pedersen, O., Paterson, A. D., Kraaij, R., … Raes, J. (2021). Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 53(2), 156–165.
78.
Laland, K. N., Odling-Smee, J., & Gilbert, S. F. (2008). EvoDevo and niche construction: building bridges. Journal of Experimental Zoology B: Molecular and Developmental Evolution, 310(7), 549–566.
79.
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B; Biological Sciences, 282. 20151019.
80.
Levis, N. A., & Pfennig, D. W. (2018). Phenotypic plasticity, canalization, and the origins of novelty: evidence and mechanisms from amphibians. Seminars in Cell and Developmental Biology, 88, 80–90.
81.
Levis, N. A., Isdaner, A. J., & Pfennig, D. W. (2018). Morphological novelty emerges from pre-existing phenotypic plasticity. Nature Ecology and Evolution, 2, 1289–1297.
82.
Levis, N. A., & Pfennig, D. W. (2020). Plasticity-led evolution: A survey of developmental mechanisms and empirical tests. Evolution and Development, 22(1-2), 71–87.
83.
Lewontin, R. C. (2000). The Triple Helix: Gene, Organism and Environment. Harvard University Press.
84.
Ley, R. E., Knight, R., & Gordon, J. I. (2007). The human microbiome: Eliminating the biomedical/environmental dichotomy in microbial ecology. Environmental Microbiology, 9(1), 3–4.
85.
Lillycrop, K. A., & Burdge, G. C. (2015). Maternal diet as a modifier of offspring epigenetics. Journal of the Developmental Origins of Health and Disease, 6(2), 88–95.
86.
Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A., & Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. Journal of Nutrition, 135(6), 1382–1386.
87.
Lin, D., & Koskella, B. (2015). Friend and foe: factors influencing the movement of the bacterium Helicobacter pylori along the parasitism–mutualism continuum. Evolutionary Applications, 8(1), 9–22.
88.
Margulis, L. (2006). “Foreword”. In S, Harding , Animate Earth: Science, Intuition and Gaia, (pp. 7–12), Chelsea Green.
89.
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107–18.
90.
McFall-Ngai, M. J. (2002). Unseen forces: the influence of bacteria on animal development. Developmental Bioliogy, 242(1), 1–14.
91.
McFall-Ngai, M. J. (2014). The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annual Reviews of Microbiology, 68, 177–194.
92.
McFall-Ngai, M., Hadfield, M. G., Bosch, T.C., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., Wernegreen, J. J., Reid, A., Ruby, E. G., Rumpho, M., Sanders, J. G., … Tautz, D. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3229–3236.
93.
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., Belzer, C., Delgado Palacio, S., Arboleya Montes, S., Mancabelli, L., Lugli, G.A., Rodriguez, J. M., Bode, L., de Vos, W., Gueimonde, M., Margolles, A., van Sinderen, D., & Ventura, M. (2017). The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81(4), e00036–17.
94.
Moore, D. S. (2015). The Developing Genome: An Introduction to Behavioral Epigenetics. Oxford.
95.
Moore, D. S. and Lickliter, R. (2023). Development as explanation: Understanding phenotypic stability and variability after the failure of genetic determinism. Progress in Biophysics and Molecular Biology, 178, 72–77,
96.
Morais, L. H., Schreiber, H. L., 4th., & Mazmanian, S. K. (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241–255.
97.
Münger, E., Montiel-Castro, A. J., Langhans, W., & Pacheco-López, G. (2018). Reciprocal interactions between gut microbiota and host social behavior. Frontiers in. Integrative Neuroscience, 12, 21.
98.
Nagpal, J., & Cryan, J. F. (2021). Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron, 109(24), 3930–3953.
99.
Narayan, N. R., Méndez-Lagares, G., Ardeshir, A., Lu, D., Van Rompay, K. K., & Hartigan-O'Connor, D. J. (2015). Persistent effects of early infant diet and associated microbiota on the juvenile immune system. Gut Microbes, 6(4), 284–289.
100.
Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267.
101.
Nijhout, H. F., Kudla, A. M., & Hazelwood, C. C. (2021). Genetic assimilation and accommodation: Models and mechanisms. Current Topics in Developmental Biology, 141, 337–369.
102.
Odling-Smee, J., Laland, K. N., & Feldman, M. W. (2003). Niche Construction: The Neglected Process in Evolution Monographs in Population Biology. 37. Princeton University Press.
103.
Ogino, H., & Yasuda, K. (2000). Sequential activation of transcription factors in lens induction. Development Growth and Differentiation, 42(5), 437–448.
104.
O'Hara, A. M, & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–93.
105.
Olofsson, M., Vallin, A., Jakobsson, S., & Wiklund, C. (2010). Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS One, 5(5), e10798.
106.
Ousey, J., Boktor, J. C., & Mazmanian, S. K. (2023). Gut microbiota suppress feeding induced by palatable foods. Current Biology, 33(1), 147–157.e7.
107.
Parsons, K. J., Trent Taylor, A., Powder, K. E., & Albertson, R. C. (2014). Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids. Nature Communications, 5, 3629.
108.
Pfennig, D. W. (2021). Key questions about phenotypic plasticity. In D. W.Pfennig (Ed), Phenotypic Plasticity and Evolution: Causes, Consequences, and Controversies (pp. 55–90). CRC Press.
109.
Piaget, J. (1929). L’adaptation de la Limnaea stagnalis au Milieu Lacustres de la Suisse. Romande. Etude Biométrique et Génétique. Revue Suisse Zoologie, 36, 263–531.
110.
Puricelli, C., Rolla, R., Gigliotti, L., Boggio, E., Beltrami, E., Dianzani, U., & Keller, R. (2022). The gut-brain-immune axis in autism spectrum disorders: A state-of-art report. Frontiers in Psychiatry, 12, 755171.
111.
Piaget, J. (1966). Observations sur le Mode d’Insertion et la Chute des Rameaux Secondaires. Chez les Sedum, Candollea,21/22, 137–239.
112.
Piaget, J. (1978). Behaviour and Evolution. Pantheon Books.
113.
Piaget, J. (1980) Adaptation and Intelligence: Organic Selection and Phenocopy, Chicago, University of Chicago Press, [Translation of Adaptation Vitale et Psychologie de l’Intelligence: Sélection Organique et Phénocopie, 1974, Hermann, Paris].
114.
Pigliucci, M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture. The John Hopkins University Press.
115.
Prudic, K. L., , A., Stoehr, M., Wasik, B. R., & Monteiro, A. (2015). Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 282(1798), 20141531.
116.
Queitsch, C., Sangster, T. A., & Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature, 417(6889), 618–624.
117.
Ratsika, A., Cruz Pereira, J. S., Lynch, C. M. K., Clarke, G., & Cryan, J. F. (2022). Microbiota-immune-brain interactions: A lifespan perspective. Current Opinions in Neurobiology, 78, 102652.
118.
Rhee, K.-J., Sethupathi, P., Driks, A., Lanning, D. K., & Knight, K. L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. Journal of Immunology, 172(2), 1118–1124.
119.
Robert, J. S. (2003). Developmental Systems and Animal Behaviour. Biology & Philosophy, 18(3), 477–489.
120.
Rohner, N., Jarosz, D. F., Kowalko, J. E, Yoshizawa, M., Jeffery, W. R., Borowsky, R. L., Lindquist, S., & Tabin, C. J. (2013). Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science, 342(6164), 1372–1375.
121.
Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., Avnit-Sagi, T., Lotan-Pompan, M., Weinberger, A., Halpern, Z., Carmi, S., Fu, J., Wijmenga, C., Zhernakova, A., Elinav, E., … Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), 210–215.
122.
Ruokolainen, L., Paalanen, L., Karkman, A., Laatikainen, T., Von Hertzen, L., Vlasoff, T., Markelova, O., Masyuk, V., Auvinen, P., Paulin, L., Alenius, H., Fyhrquist, N., Hanski, I., Mäkelä, M., Zilber, E., Jousilahti, P., Vartiainen, E., & Haahtela, T. (2017). Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clinical and Experimental Allergy, 47(5), 665–674.
123.
Rutherford, S. L., & Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396(6709), 336–342.
124.
Sander, E. G., Warner, R. G., Harrison, H. N., & Loosli, J. K. (1959). The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf. Journal of Dairy Science, 42(9), 1600–1605.
125.
Sangster, T. A., Salathia, N., Undurraga, S., Milo, R., Schellenberg, K., Lindquist, S., & Queitsch, C. (2008). HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2963–2968.
126.
Sariola, S., & Gilbert, S. F. (2020). Toward a symbiotic perspective on public health: Recognizing the ambivalence of microbes in the Anthropocene. Microorganisms, 8(5), 746.
127.
Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N, Francis, M. B., Britton, R.A., & Costa-Mattioli, M. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron, 101(2), 246–259.e6.
128.
Shao, Y., Forster, S. C., Tsaliki, E., Vervier, K., Strang, A., Simpson, N., Kumar, N., Stares, M. D., Rodger, A., Brocklehurst, P., Field, N., & Lawley, T. D. (2019). Stunted microbiota and opportunistic pathogen colonization in Caesarean-section birth. Nature, 574(7776), 117–121.
129.
Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The central nervous system and the gut microbiome. Cell, 167(4), 915–932.
130.
Sharon, G., Cruz, N. J., Kang, D.-W., Gandal, M. J., Wang, B., Kim, Y.-M., Zink, E. M., Casey, C. P., Taylor, B. C., Lane, C. J., Bramer, L. M., Isern, N. G., Hoyt, D. W., Noecher, C., Sweredoski, M. J., Moradian, A., Borenstein, E., Jannson, J. K., Knight, R., Metz, T.O., Mazmanian, S. K., Geschwind, D. H., … Krajmalnik-Brown, R. (2019). Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell, 177(6), 1600–1618.e17.
131.
Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T.G., & Cryan, J. F. (2019). Microbiota and the social brain. Science, 366(6465), eaar2016.
132.
Shin Yim, Y., Park, A, Berrios, J., Lafourcade, M., Pascual, L. M., Soares, N., Yeon Kim, J., Kim, S., Kim, H., Waisman, A, Littman, D. R., Wickersham, I. R., Harnett, M. T., Huh, J. R, & Choi, G. B. (2017). Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature, 549(7673), 482–487.
133.
Smith, M. I., Yatsunenko, T., Manary, M. J., Trehan, I., Mkakosya, R., Cheng, J., Kau, A. L., Rich, S. S., Concannon, P., Mychaleckyj, J. C., Liu, J., Houpt, E., Li, J. V, Holmes, E., Nicholson, J., Knights, D., Ursell, L. K., Knight, R., & Gordon, J. I. (2013). Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor. Science, 339(6119), 548–554.
134.
Stappenbeck, T. S., Hooper, L. V., & Gordon, J. I. (2002). Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedingsof the National Academy of Sciences USA, 99(24), 15451–15455.
135.
Stevens, L. M., & Landis, S. C. (1988). Developmental interactions between sweat glands and the sympathetic neurons which innervate them: Effects of delayed innervation on neurotransmitter plasticity and gland maturation. Developmental Biology, 130(2), 703–720.
136.
Stewart, C. J., Ajami, N. J., O'Brien, J. L., Hutchinson, D. S., Smith, D. P., Wong, M. C, Ross, M. C., Lloyd, R. E, Doddapaneni, H., Metcalf, G. A., Muzny, D., Gibbs, R. A., Vatanen, T., Huttenhower, C., Xavier, R. J., Rewers, M., Hagopian, W., Toppari, J., Ziegler, A. G., … Petrosino, J. F. (2018). Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature, 562(7728), 583–588.
137.
Stilling, R. M., Moloney, G. M., Ryan, F. J., Hoban, A. E., Bastiaanssen, T. F., Shanahan, F., Clarke, G., Claesson, M. J., Dinan, T. G. & Cryan, J. F. (2018). Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice. eLlife, 7, e33070,
138.
Stotz, K. (2014). Extended evolutionary psychology: the importance of transgenerational developmental plasticity. Frontiers in Psychology, 5, 908.
139.
Sultan, S. E. (2015). Organism and Environment: Ecological Development, Niche Construction, and Adaptation. Oxford University Press.
140.
Sultan, S. E. (2021). Phenotypic plasticity as an innate property of organisms. In D.Pfennig (Ed), Phenotypic Plasticity and Evolution: Causes, Consequences, and Controversies (pp. 3–24). CRC Press.
141.
Sun, J., Lu, M., Gillette, N. E, & Wingfield, M. J. (2013). Red turpentine beetle: Innocuous native becomes invasive tree killer in China. Annual Review of Entomology, 58, 293–311.
142.
Suzuki, Y., & Nijhout, H. F. (2006). Evolution of a polyphenism by genetic assimilation. Science, 311(5761), 650–652.
143.
Tauber, A. I. (2013). Immunology’s theories of cognition. History and Philosophy of the Life Sciences, 35(2), 239–264.
144.
Thaiss, C., Zmora, N., Levy, M., & Elinav, E. (2016). The microbiome and innate immunity. Nature, 535(7610), 65–74.
145.
Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M, Baines, J. F., Bosch, T. C. G., Cryan, J.F., Gilbert, S. F., Goodnight, C. J., Lloyd, E. A., Sapp, J., Vandenkoornhuyse, P., Zilber-Rosenberg, I., Rosenberg, E., & Bordenstein, S. R. (2016). Getting the hologenome concept right: an ecoevolutionary framework for hosts and their microbiomes. mSystems, 1(2), e00028–16.
146.
Tsuchida, T., Koga, R., Horikawa, M., Tsunoda, T., Maoka, T., Matsumoto, S., Simon, J. C., & Fukatsu, T. (2010). Symbiotic bacterium modifies aphid body color. Science, 330(6007), 1102–1104.
147.
Turpin, W., Espin-Garcia, O., Xu, W., Silverberg, M. S., Kevans, D., Smith, M. I, Guttman, D. S., Griffiths, A., Panaccione, R., Otley, A., Xu, L., Shestopaloff, K., Moreno-Hagelsieb, G., GEM Project Research Consortium, Paterson, A. D., & Croitoru, K. (2016). Association of host genome with intestinal microbial composition in a large healthy cohort. Nature Genetics, 48(11), 1413–1417.
148.
Vatanen, T., Jabbar, K. S., Ruohtula, T., Honkanen, J., Avila-Pacheco, J., Siljander, H., Stražar, M., Oikarinen, S., Hyöty, H., Ilonen, J., Mitchell, C. M., Yassour, M., Virtanen, S. M., Clish, C. B., Plichta, D. R., Vlamakis, H., Knip, M., & Xavier, R.J. (2022). Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism. Cell, 185(26), 4921–4936.e15.
149.
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofmann, P. I., & Gluckman, P. D. (2000). Fetal origins of hyperphagia, obesity, and hypertension and its postnatal amplification by caloric nutrition. American Journal of Physiology, 279(1), E83–87.
150.
Vuong, H. E., Pronovost, G. N., Williams, D. W., Coley, E. J. L., Siegler, E. L., Qiu, A., Kazantsev, M., Wilson, C. J., Rendon, T., & Hsiao, E. Y. (2020). The maternal microbiome modulates fetal neurodevelopment in mice. Nature, 586(7828), 281–286.
151.
Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7(2), 118–126.
152.
Waddington, C. H. (1956). Genetic assimilation of the bithorax phenotype. Evolution, 10, 1–13.
153.
Waddington, C. H. (1975). Genetic assimilation in Limnaea. The evolution of an evolutionist (pp. 92–95). Cornell University Press.
154.
Wampach, L., Heintz-Buschart, A., Fritz, J. V., Ramiro-Garcia, J., Habier, J., Herold, M., Narayanasamy, S., Kaysen, A., Hogan, A. H., Bindl, L., Bottu, J., Halder, R., Sjöqvist, C., May, P., Andersson, A. F., de Beaufort, C., & Wilmes, P. (2018). Birth mode Is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nature Communications, 9(1), 5091.
155.
Weaver, I. C., Cervoni, N., Champagne, F.A., D’Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.
156.
Weber, C., Zhou, Y., Lee, J. G., Looger, L. L., Qian, G., Ge, C., & Capel, B. (2020). Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b. Science, 368(6488), 303–306.
157.
Wei, G. Z., Martin, K. A., Xing, P.Y., Agrawal, R., Whiley, L., Wood, T. K., HejndorfNg, S.Y. Z., Low, J. Z. Y., Rossant, J., Nechanitzky, R., Holmes, E., Nicholson, J. K., Tan, E. K., Matthews, P. M., & Pettersson, S. (2021). Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 118(27), e2021091118.
158.
WeissAlbada, L. C.B., Becker, S. M., Meckelmann, S. W., Klein, J., Meyer, M., Schmitz, O. J., Sommer, U., Leo, M., Zagermann, J., Metzler-Nolte, N., & Tollrian, R. (2018). Identification of Chaoborus kairomone chemicals that induce defenses in Daphnia. Nature Chemical Biology, 14(12), 1133–1139.
159.
West-Eberhard, M.J. (2003). Developmental Plasticity and Evolution. Oxford University Press.
160.
West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences of the United States of America, 102(Suppl 1), 6543–6549.
161.
Whitman, O. (1919) The behavior of pigeons: Posthumous works of Charles Otis Whitman (III). Washington, Carnegie Institution of Washington.
162.
Wilmut, I., Campbell, K., & Tudge, C. (2000). The Second Creation: Dolly and the Age of Biological Control. Harvard University Press.
163.
Wirbel, J., Zych, K., Essex, M., Karcher, N., Kartal, E., Salazar, G., Bork, P., Sunagawa, S., & Zeller, G. (2021). Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biology, 22(1), 93.
164.
Wu, W. L., Adame, M.D., Liou, C. W., Barlow, J. T., Lai, T. T., Sharon, G., Schretter, C. E., Needham, B. D., Wang, M. I., Tang, W., Ousey, J., Lin, Y. Y., Yao, T. H., Abdel-Haq, R., Beadle, K., Gradinaru, V., Ismagilov, R. F., & Mazmanian, S. K. (2021). Microbiota regulate social behaviour via stress response neurons in the brain. Nature, 595(7867), 409–414.
165.
Yan, J., Herzog, J. W., Tsang, K., Brennan, C. A., Bower, M. A., Garrett, W. S., Sartor, B. R., Aliprantis, A. O., Charles, J. F. (2016). Gut microbiota induce IGF-1 and promote bone formation and growth Proceedings of the. National Academy of Sciences of the United States of America, 113(47), E7554–E7563.
166.
Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews, 32(5), 723–735.
167.
Zivkovic, A. M., German, J. B., Lebrilla, C.B., & Mills, D. A. (2011). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4653–4658.
168.
Zuo, Z. T., Ma, Y., Sun, Y., Bai, C. Q., Ling, C. H., & Yuan, FL (2021). The protective effects of Helicobacter pylori Infection on allergic asthma. International Archives of Allergy and Immunology,l, 182(1), 53–64.
You do not currently have access to this content.