Currently, a central problem for theoretical biology is the integration of development with genetics and evolutionary theory. Through the late 20th century, biologists held that animals resemble their ancestors strictly because of the transgenerational transmission of DNA. This view effectively wrote development out of evolutionary biology. However, many molecular and developmental biologists now understand that phenotypes – anatomical, physiological, and behavioral traits – are not determined by genes (i.e., DNA segments) alone; instead, they emerge epigenetically from developmental processes involving co-acting genetic factors, environmental factors, molecular epigenetic factors, and other non-genetic factors within organisms’ bodies. This insight forces a rethinking of biological inheritance. Perspectives focusing on the dynamics of developmental systems offer a compelling alternative way to think about inheritance, providing a powerful substitute to the reductionistic framework that attributes phenotypic outcomes to genetic instructions set in advance of developmental processes. Rethinking genetics, epigenetics, and inheritance by focusing on the dynamics of developmental systems helps highlight the bidirectional effects of evolutionary and developmental processes on one another, yielding a more integrated understanding of development, inheritance, and evolution. Simultaneously, this approach encourages rejection of genetic determinism, a simplistic perspective that continues to appear in psychological writing, despite its biological implausibility.

1.
Amundson, R. (2005). The changing role of the embryo in evolutionary thought. Cambridge University Press.
2.
Anway, M. D., Cupp, A. S., Uzumcu, M., & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors on male fertility. Science, 308(5727), 1466–1467.
3.
Anway, M. D., & Skinner, M. K. (2006). Epigenetic transgenerational actions of endocrine disruptors. Endocrinology, 147(6 Suppl), S43–S49.
4.
Aristotle (1984). In J.Barnes (Ed), The complete works of Aristotle, the revised Oxford translations (Vol. 1). Princeton University Press.
5.
Avital, E., & Jablonka, E. (2000). Animal traditions: Behavioural inheritance in evolution. Cambridge University Press.
6.
Baedke, J. (2018). Above the gene beyond biology: Toward a philosophy of epigenetics. University of Pittsburgh Press.
7.
Baedke, J., & Gilbert, S. F. (2021). Evolution and development. In E. N.Zalta (Ed), The Stanford Encyclopedia of Philosophy. Fall 2021 Edition. https://plato.stanford.edu/archives/fall2021/entries/evolution-development/.
8.
Bonduriansky, R., & Day, T. (2018). Extended heredity: A new understanding of inheritance and evolution. Princeton University Press.
9.
Bull, J. J. (1980). Sex determination in reptiles. Quarterly Review of Biology, 55(1), 3–21.
10.
Burggren, W. W., & Crews, D. (2014). Epigenetics in comparative biology: Why we should pay attention. Integrative and Comparative Biology, 54(1), 7–20.
11.
Champagne, F. A., & Meaney, M. J. (2006). Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biological Psychiatry, 59(12), 1227–1235.
12.
Champagne, F. A., Weaver, I. C. G., Diorio, J., Dymov, S., Szyf, M., & Meaney, M. J. (2006). Maternal care associated with methylation of the estrogen receptor-α1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring. Endocrinology, 147(6), 2909–2915.
13.
Chang, H. S., Anway, M. D., Rekow, S., & Skinner, M. K. (2006). Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology, 147(12), 5524–5541.
14.
Clark, M. M., & Galef, B. G. (1995). A gerbil’s dam’s fetal intrauterine position affects the sex ratios of the litters she gestates. Physiology and Behavior, 57(2), 297–299.
15.
Clark, M. M., Karpiuk, P., & Galef, B. G. (1993). Hormone mediated inheritance of acquired characteristics in Mongolian gerbils. Nature, 364(6439), 712.
16.
Crews, D. (2010). Epigenetics, brain, behavior, and the environment. Hormones, 9(1), 41–50.
17.
Crews, D. (2011). Epigenetic modifications of brain and behavior: Theory and practice. Hormones and Behavior, 59(3), 393–398.
18.
Danchin, E., Charmantier, A., Champagne, F., Mesouli, A., Pulol, B., & Blanchet, S. (2011). Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nature Reviews: Genetics, 12, 475–486.
19.
Darwin, C. (1859/1991). On the origin of species by means of natural selection. Prometheus Books.
20.
Davidson, E. H. (2001). Genomic regulatory systems: Development and evolution. Academic Press.
21.
Daxinger, L., & Whitelaw, E. (2012). Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Reviews: Genetics, 13(3), 153–162.
22.
Denenberg, V. H., & Rosenberg, K. M. (1967). Nongenetic transmission of information. Nature, 216(5115), 549–550.
23.
Denenberg, V. H., & Whimbey, A. C. (1963). Behavior of adult rats is modified by the experience their mothers had as infants. Science, 142(3596), 1192–1193.
24.
Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89–96.
25.
Dobzhansky, T. (1951). Genetics and the origin of species. (3rd ed.). Columbia University Press.
26.
Francis, D. D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations in maternal behavior and stress responses in the rat. Science, 286(5442), 1155–1158.
27.
Franklin, T. B., Russig, H., Weiss, I. C., Graff, J., Linder, N., Michalon, A., et al. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68(5), 408–415.
28.
Gerhart, J., & Kirschner, M. (1997). Cells, embryos, and evolution. Blackwell Scientific.
29.
Gerson, E. M. (2007). The juncture of evolutionary and developmental biology. In M. D.Laubichler, & J.Maienschein (Eds), From embryology to evo-devo: A history of developmental evolution (pp. 435–463). MIT Press.
30.
Gilbert, S. F. (1992). Cells in search of community: Critiques of Weismannism and selectable units in ontogeny. Biology and Philosophy, 7(4), 473–487.
31.
Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30(1), 65–74.
32.
Gilbert, S. F., & Epel, D. (2015). Ecological developmental biology: The environmental regulation of development, health, and evolution (2nd ed.). Sinauer Associates, Inc.
33.
Goodwin, B. (1994). How the leopard changed its spots: The evolution of complexity. Charles Scribner.
34.
Gottlieb, G. (1971). Development of species identification in birds: An inquiry into the prenatal determinants of perception. University of Chicago Press.
35.
Gottlieb, G. (1998). Normally occurring environmental and behavioral influences on gene activity: From central dogma to probabilistic epigenesis. Psychological Review, 105(4), 792–802.
36.
Gottlieb, G. (2001). The relevance of developmental–psychobiological metatheory to developmental neuropsychology. Developmental Neuropsychology, 19(1), 1–9.
37.
Gottlieb, G. (2002). Emergence of the developmental manifold concept from an epigenetic analysis of instinctive behavior. In D.Lewkowicz, & R.Lickliter (Eds), Conceptions of development: Lessons from the laboratory (pp. 31–56). Psychology Press.
38.
Gottlieb, G., Wahlsten, D., & Lickliter, R. (2006). The significance of biology for human development: A developmental psychobiological systems view. In W.Damon, & R.M Lerner (Eds), Handbook of child psychology (5th ed., pp. 210–257). John Wiley Publishers.
39.
Gould, S. J. (1977). Ontogeny and phylogeny. The Belknap Press of Harvard University Press.
40.
Gray, R. (1992). Death of the gene: Developmental systems strike back. In P. E.Griffiths (Ed), Trees of Life. Kluwer.
41.
Griffiths, P. E., & Gray, R. D. (1994). Developmental systems and evolutionary explanation. The Journal of Philosophy, XCI(6), 277–304.
42.
Hall, B. K. (1992). Waddington’s legacy in development and evolution. American Zoologist, 32(1), 113–122.
43.
Hallgrimsson, B., & Hall, B. K. (2011). Epigenetics: Linking genotype and phenotype in development and evolution. University of California Press.
44.
Helanterä, H., & Uller, T. (2010). The Price Equation and extended inheritance. Philosophy, Theory, and Practice in Biology, 2, E101.
45.
Henikoff, S., & Greally, J. M. (2016). Epigenetics, cellular memory and gene regulation. Current Biology, 26(14), R644–R648.
46.
Ho, D. H. (2014). Transgenerational epigenetics: The role of maternal effects on cardiovascular development. Integrative and Comparative Biology, 54(1), 43–51.
47.
Ho, D. H., & Burggren, W. W. (2010). Epigenetics and transgenerational transfer: A physiological perspective. Journal of Experimental Biology, 213(1), 3–16.
48.
Huxley, J. (1942). Evolution, the Modern Synthesis. Allen & Unwin.
49.
Jablonka, E. (2007). The development construction of heredity. Developmental Psychobiology, 49(8), 808–817.
50.
Jablonka, E., & Lamb, M. J. (1995). Epigenetic inheritance and evolution. Oxford University Press.
51.
Jablonka, E., & Lamb, M. J. (2002). The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981, 82–96.
52.
Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.
53.
Jablonka, E., & Lamb, M. J. (2007). Précis of Evolution in Four Dimensions. Behavioral and Brain Sciences, 30(4), 353–392.
54.
Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Review of Biology, 84(2), 131–176.
55.
Johannsen, W. (1911). The genotype conception of heredity. American Naturalist, 45(531), 129–159.
56.
Johnston, T. D., & Edwards, L. (2002). Genes, interactions, and the development of behavior. Psychological Review, 109(1), 26–34.
57.
Kampourakis, K. (2021). Understanding Genes. Cambridge University Press.
58.
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society of London Series B: Biological Sciences, 282(1813), 20151019.
59.
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., Odling-Smee, J., Wray, G. A., Hoekstra, H. E., Futuyma, D. J., Lenski, R. E., Mackay, T. F. C., Schluter, D., & Strassmann, J. E. (2014). Does evolutionary theory need a rethink?. Nature, 514(7521), 161–164.
60.
Laubichler, M. D., & Maienschein, J. (2007). From embryology to evo-devo: A history of developmental evolution. MIT Press.
61.
Lickliter, R. (2000). An ecological approach to behavioral development: Insights from comparative psychology. Ecological Psychology, 12(4), 319–334.
62.
Lickliter, R., & Honeycutt, H. (2015). Biology, development, and human systems. In W. F.Overton, & P. C. M.Molenaar (Eds.), Handbook of child psychology and developmental science (7th ed., Vol. 1: Theory & method, pp. 162–207). Wiley Blackwell.
63.
Lickliter, R., & Honeycutt, H. (2020). Epigenesis without preformationism: Taking development seriously. In M. F.Mascola, & T. R.Bidell (Eds), Handbook of integrative psychological development: Essays in honor of Kurt Fischer (pp. 191–207). Routledge.
64.
Lickliter, R., & Witherington, D.C. (2017). Towards a truly developmental epigenetics. Human Development, 60, 124–138.
65.
Lillycrop, K. A., & Burge, G. C. (2015). Maternal diet as a modifier of offspring epigenetics. Journal of the Developmental Origins of Health and Disease, 6(2), 88–95.
66.
Mameli, M. (2005). The inheritance of features. Biology and Philosophy, 20(2-3), 365–399.
67.
Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Harvard University Press.
68.
Mennella, J. A., Jagnow, C. P., & Beauchamp, G. K. (2001). Prenatal and postnatal flavor learning by human infants. Pediatrics, 107(6), e88.
69.
Moore, D. S. (2002). The dependent gene: The fallacy of nature vs. nurture. W.H. Freeman.
70.
Moore, D. S. (2008). Individuals and populations: How biology’s theory and data have interfered with the integration of development and evolution. New Ideas in Psychology, 26(3), 370–386.
71.
Moore, D. S. (2015). The developing genome: An introduction to behavioral epigenetics. Oxford University Press.
72.
Moore, D. S. (2016). Behavioral epigenetics. WIREs Systems Biology and Medicine, 9(1).
73.
Moore, D. S. (2017). The potential of epigenetics research to transform conceptions of phenotype development. Human Development, 60(2-3), 69–80.
74.
Moore, D. S. (2023). On the evolution of epigenetics via exaptation: A developmental systems perspective. Annals of the New York Academy of Sciences, 1–12.
75.
Moore, D. S., & Flom, R. (2020). Epigenetics and behavioral development. Infant Behavior and Development, 61, 101477.
76.
Moore, D. S., & Lickliter, R. (2023). Development as explanation: Understanding phenotypic stability and variability after the failure of genetic determinism. Progress in Biophysics and Molecular Biology, 178, 72–77.
77.
Müller, G. B., & Newman, S. A. (2003). Origination of organismal form: Beyond the gene in developmental and evolutionary biology. MIT Press.
78.
Nanney, D. L. (1958). Epigenetic control systems. Proceedings of the National Academy of Sciences, 44(7), 712–717.
79.
Narvaez, D., Moore, D. S., Witherington, D. C., Vandiver, T. I., & Lickliter, R. (2022). Evolving evolutionary psychology. American Psychologist, 77(3), 424–438.
80.
Newman, S. A., & Müller, G. B. (2000). Epigenetic mechanisms of character origination. Journal of Experimental Zoology, 288(4), 304–317.
81.
Nijhout, H. F. (1990). Problems and paradigms: Metaphors and the role of genes in development. Bioessays, 12(9), 441–446.
82.
Noble, D. (2006). The dance of life: Biology beyond the genome. Oxford University Press.
83.
Noble, D. (2008). Genes and causation. Philosophical Transactions of the Royal Society A, 366(1878), 3001–3015.
84.
Oyama, S. (1985/2000). The ontogeny of information. Duke University Press.
85.
Oyama, S. (1999). Locating development, locating developmental systems. In E.Scholnick, K.Nelson, S. A.Gelman, & P. H.Miller (Eds.), Conceptual development: Piaget’s legacy (pp. 185–208). Lawrence Erlbaum.
86.
Oyama, S., Griffiths, P. E., & Gray, R. D. (2001). Cycles of contingency: Developmental systems and evolution. MIT Press.
87.
Rakyan, V. K., Chong, S., Champ, M. E., Cuthbert, P. C., Morgan, H. D., Luu, K. V. K., et al. (2003). Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proceedings of the National Academy of Sciences USA, 100(5), 2538–2543.
88.
Richards, C. L., Bossdorf, O., & Pigliucci, M. (2010). What role does heritable epigenetic variation play in phenotypic evolution?BioScience, 60(3), 232–237.
89.
Robert, J. S. (2004). Embryology, epigenesis, and evolution: Taking development seriously. Cambridge University Press.
90.
Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65(9), 760–769.
91.
Russo, V. E. A., Martienssen, R. A., & Riggs, A. D. (1996). Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press.
92.
Saunders, P. T. (2017). Epigenetics and evolution. Human Development, 60(2-3), 81–94.
93.
Skinner, M. K., Anway, M. D., Savenkova, M., Gore, A. C., & Crews, D. (2008). Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One, 3(11), e345.
94.
Uller, T., & Helanterä, H. (2017). Heredity and evolutionary theory. In P.Huneman, & D. M.Walsh (Eds), Challenging the modern synthesis: Adaptation, development, and inheritance (pp. 280–316). Oxford University Press.
95.
Waddington, C. H. (1941). Evolution of developmental systems. Nature, 147(3717), 108–110.
96.
Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18–20.
97.
Waddington, C. H. (1957). The strategy of the genes. Allen and Unwin.
98.
Waggoner, M. R., & Uller, T. (2015). Epigenetic determinism in science and society. New Genetics and Society, 34(2), 177–195.
99.
Walsh, D. M. (2015). Organisms, agency, and evolution. Cambridge University Press.
100.
Warner, R. R. (1984). Mating behavior and hermaphroditism in coral reef fishes. American Scientist, 72, 128–136.
101.
Wei, G. Z., Martin, K. A., Xing, P. Y., Agrawal, R., Whiley, L., Wood, T. K., Hejndorf, S., Ng, Y. Z., Low, J. Z. Y., Rossant, J., Nechanitzky, R., Holmes, E., Nicholson, J. K., Tan, E. K., Matthews, P. M., & Pettersson, S. (2021). Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences USA, 118(27), e2021091118.
102.
Weismann, A. (1893). The germ plasm: A theory of heredity. Charles Scribner’s Sons.
103.
West, M. J., King, A. P., & Freeberg, T. M. (1994). The nature and nurture of neo-phenotypes: A case history. In L. A.Real (Ed), Behavioral mechanisms in evolutionary ecology (pp. 238–257). University of Chicago Press.
104.
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.
105.
Whimbey, A. C., & Denenberg, V. H. (1967). Experimental programming of life histories: The factor structure underlying experimentally created individual differences. Behaviour, 29(2), 296–314.
106.
Wolf, J. B., & Wade, M. J. (2009). What are maternal effects (and what are they not)?. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1520), 1107–1115.
107.
Wolf, U. (1995). The genetic contribution to the phenotype. Human Genetics, 95(2), 127–148.
You do not currently have access to this content.