Epigenetics remains an exciting subdiscipline of biology, generating discoveries and insights about development. Because epigenetic phenomena can draw attention to the dynamic, interactional, and probabilistic nature of phenotype development, epigenetics research could hasten the demise of both nature-nurture debates and reductionist, genetically determinist perspectives on phenotype development. However, new data alone will not inevitably transform conceptualizations of phenotype origins, because it remains possible to assimilate epigenetic phenomena into traditional conceptual frameworks; epigenetic discoveries could even strengthen biologically determinist conclusions if traditional conceptualizations are retained. Although epigenetics will not force conceptual transformation, epigenetics research encourages the dismissal of the nature-nurture dichotomy by emphasizing mechanisms underlying phenotype development, thereby fostering clearer conceptions of how phenotypes emerge from interactions between biological and nonbiological components of developing systems. The developmental systems perspective, which acknowledges the vital roles of contexts in development, offers benefits not provided by reductionist perspectives, making it an appropriate conceptual framework for developmental science.

1.
Amara, S.G., Jonas, V., Rosenfeld, M.B., Ong, E.S., & Evans, R.M. (1982). Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature, 298, 240-244. doi:10.1038/298240a0
2.
Anderson, O.S., Sant, K.E., & Dolinoy, D.C. (2012). Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional Biochemistry, 23, 853-859. doi:10.1016/j.jnutbio.2012.03.003
3.
Blumberg, M.S. (2009). Freaks of nature: What anomalies tell us about development and evolution. New York, NY: Oxford University Press.
4.
Edelman, G.M. (1992). Bright air, brilliant fire. New York, NY: Basic Books.
5.
Ford, D.H., & Lerner, R.M. (1992). Developmental systems theory: An integrative approach. Thousand Oaks, CA: Sage.
6.
Gilbert, S.F., & Epel, D. (2015). Ecological developmental biology: The environmental regulation of development, health, and evolution.Vol. 2. Sunderland, MA: Sinauer Associates.
7.
González-Pardo, H., & Álvarez, M.P. (2013). Epigenetics and its implications for psychology. Psicothema, 25, 3-12. doi:10.7334/psicothema2012.327
8.
Gottlieb, G. (1976). The role of experience in the development of behavior and the nervous system. In G. Gottlieb (Ed.), Neural and behavioral specificity. New York, NY: Academic Press. doi:10.1016/B978-0-12-609303-2.50008-X
9.
Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27, 4-13. doi:10.1037/0012-1649.27.1.4
10.
Gottlieb, G. (1992). Individual development and evolution: The genesis of novel behavior. New York, NY: Oxford University Press.
11.
Gottlieb, G. (1997). Synthesizing nature-nurture: Prenatal roots of instinctive behavior. Mahwah, NJ: Erlbaum Associates.
12.
Gottlieb, G. (1998). Normally occurring environmental and behavioral influences on gene activity: From central dogma to probabilistic epigenesis. Psychological Review, 105, 792-802. doi:10.1037/0033-295X.105.4.792-802
13.
Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 1-11. doi:10.1111/j.1467- 7687.2007.00556.x
14.
Gottlieb, G., Wahlsten, D., & Lickliter, R. (1998). The significance of biology for human development: A developmental psychobiological systems view. In W. Damon (Series Ed.) & R.M. Lerner (Vol. Ed.), Handbook of child psychology. Vol. 1: Theoretical models of human development (5th ed., pp. 233-234). New York, NY: Wiley.
15.
Greenough, W.T., Black, J.E., & Wallace, C.S. (1987). Experience and brain development. Child Development, 58, 539-559. doi:10.2307/1130197
16.
Griffiths, P.E., & Tabery, J. (2008). Behavioral genetics and development: Historical and conceptual causes of controversy. New Ideas in Psychology, 26, 332-352. doi:10.1016/j.newideapsych.2007.07.016
17.
Harper, L.V. (2005). Epigenetic inheritance and the intergenerational transfer of experience. Psychological Bulletin, 131, 340-360. doi:10.1037/0033-2909.131.3.340
18.
Ho, D.H., & Burggren, W.W. (2010). Epigenetics and transgenerational transfer: A physiological perspective. Journal of Experimental Biology, 213, 3-16. doi:10.1242/jeb.019752
19.
Jablonka, E., & Lamb, M.J. (2002). The changing concept of epigenetics. Annals of the New York Academy of Science, 981, 82-96. doi:10.1111/j.1749-6632.2002.tb04913.x
20.
Johnston, T.D. (1987). The persistence of dichotomies in the study of behavioral development. Developmental Review, 7, 149-182. doi:10.1016/0273-2297(87)90011-6
21.
Johnston, T.D. (2010). Developmental systems theory. In M.S. Blumberg, J.H. Freeman, & S.R. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 12-29). New York, NY: Oxford University Press.
22.
Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature, 473, 478-483. doi: 10.1038/nature10093
23.
Karmiloff-Smith, A. (2013). From constructivism to neuroconstructivism: Did we still fall into the foundationalism/encodingism trap? Commentary on “Stepping off the pendulum: Why only an action-based approach can transcend the nativist-empiricist debate” by J. Allen and M. Bickhard. Cognitive Development, 28, 154-158. doi:10.1016/j.cogdev.2013.01.007
24.
Keller, E.F. (2014). From gene action to reactive genomes. Journal of Physiology, 592, 2423-2429. doi: 10.1113/jphysiol.2014.270991
25.
Khandanpour, C., Krongold, J., Schütte, J., Bouwman, F., Vassen, L., Gaudreau, M., Möröy, T., et al. (2012). The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice. Blood, 120, 4006-4017. doi:10.1182/blood- 2011-02-334722
26.
Kuo, Z.Y. (1967). The dynamics of behavior development: An epigenetic view. New York, NY: Random House.
27.
Lehrman, D.S. (1953). A critique of Konrad Lorenz's theory of instinctive behavior. The Quarterly Review of Biology, 28, 337-363. doi:10.1086/399858
28.
Lerner, R.M. (1986). Concepts and theories of human development (2nd ed.). New York, NY: Random House.
29.
Lester, B.M., Conradt, E., & Marsit, C. (2016). Introduction to the special section on epigenetics. Child Development, 87, 29-37. doi:10.1111/cdev.12489
30.
Lester, B.M., Tronick, E., Nestler, E., Abel, T., Kosofsky, B., Kuzawa, C.W., Wood, M.A., et al. (2011). Behavioral epigenetics. Annals of the New York Academy of Sciences, 1226, 14-33. doi:10.1111/ j.1749-6632.2011.06037.x
31.
Lewis, M. (2014). The rise of consciousness and the development of emotional life. New York, NY: Guilford Press.
32.
Lewkowicz, D.J. (2011). The biological implausibility of the nature-nurture dichotomy and what it means for the study of infancy. Infancy, 16, 331-367. doi:10.1111/j.1532-7078.2011.00079.x
33.
Li, Z., Huang, Y., Li, H., Hu, J., Liu, X., Jiang, T., Gui, Y., et al. (2015). Excess of rare variants in genes that are key epigenetic regulators of spermatogenesis in the patients with non-obstructive azoospermia. Scientific Reports, 5, 8785. doi:10.1038/srep08785
34.
Lickliter, R. (2013). Biological development: Theoretical approaches, techniques, and key findings. In P.D. Zelazo (Ed.), Oxford handbook of developmental psychology (pp. 65-90). New York, NY: Oxford University Press.
35.
Lickliter, R. (2017). Developmental evolution. WIREs Cognitive Science,8, e1422. doi:10.1002/wcs.1422
36.
Lickliter, R., & Honeycutt, H. (2015). Biology, development, and human systems. In R.M. Lerner (Ed.), Handbook of child psychology and developmental science. Vol. 1: Theory and method (pp. 162-207). New York, NY: Wiley. doi:10.1002/9781118963418.childpsy105
37.
Lillycrop, K.A., Phillips, E.S., Jackson, A.A., Hanson, M.A., & Burdge, G.C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. Journal of Nutrition, 135, 1382-1386.
38.
Loi, M., Del Savio, L., & Stupka, E. (2013). Social epigenetics and equality of opportunity. Public Health Ethics, 6, 142-153. doi:10.1093/phe/pht019
39.
Mayr, E., & Provine, W.B. (1980). The evolutionary synthesis: Perspectives on the unification of biology. Cambridge, MA: Harvard University Press. doi:10.4159/harvard.9780674865389
40.
McGowan, P.O., Meaney, M.J., & Szyf, M. (2008). Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Research, 1237, 12-24. doi:10.1016/j.brainres.2008.07.074
41.
Meaney, M.J. (2007, March). Adaptive phenotypic plasticity in rats: Maternal effects on programming of behavioral and endocrine responses to stress. In B.J. Ellis (Chair), The stress response systems: Integrated evolutionary-developmental perspectives. Symposium conducted at the meeting of the Society for Research in Child Development, Boston, MA.
42.
Meaney, M.J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81, 41-79. doi:10.1111/j.1467-8624.2009.01381.x
43.
Meaney, M.J., & Szyf, M. (2005a). Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7, 103-123.
44.
Meaney, M.J., & Szyf, M. (2005b). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neurosciences, 28, 456-463. doi:10.1016/j.tins.2005.07.006
45.
Meloni, M. (2015). Epigenetics for the social sciences: Justice, embodiment, and inheritance in the postgenomic age. New Genetics and Society, 34, 125-151. doi:10.1080/14636778.2015.1034850
46.
Michel, G.F., & Moore, C.L. (1995). Developmental psychobiology: An interdisciplinary science. Cambridge, MA: MIT Press.
47.
Moore, D.S. (2001). The dependent gene: The fallacy of “nature vs. nurture.” New York, NY: Holt.
48.
Moore, D.S. (2008a). Espousing interactions and fielding reactions: Addressing laypeople's beliefs about genetic determinism. Philosophical Psychology, 21, 331-348. doi:10.1080/09515080802170127
49.
Moore, D.S. (2008b). Individuals and populations: How biology's theory and data have interfered with the integration of development and evolution. New Ideas in Psychology, 26, 370-386. doi:10.1016/j. newideapsych.2007.07.009
50.
Moore, D.S. (2013a). Behavioral genetics, genetics, and epigenetics. In P.D. Zelazo (Ed.), Oxford handbook of developmental psychology (pp. 91-128). New York, NY: Oxford University Press.
51.
Moore, D.S. (2013b). Current thinking about nature and nurture. In K. Kampourakis (Ed.), The philosophy of biology: A companion for educators (pp. 629-652). New York, NY: Springer. doi:10.1007/978-94-007-6537-5_27
52.
Moore, D.S. (2015a). The asymmetrical bridge: Book review of James Tabery's “Beyond versus.” Acta Biotheoretica, 63, 413-427. doi:10.1007/s10441-015-9270-z
53.
Moore, D.S. (2015b). The developing genome: An introduction to behavioral epigenetics. New York, NY: Oxford University Press.
54.
Moore, D.S. (2016a). Behavioral epigenetics. WIREs Systems Biology and Medicine, 9, e1333. doi:10.1002/wsbm.1333
55.
Moore, D.S. (2016b). The developmental systems approach and the analysis of behavior. The Behavior Analyst, 39, 243-248. doi:10.1007/s40614-016-0068-3
56.
Moore, D.S., & Shenk, D. (2016). The heritability fallacy. WIREs Cognitive Science, 8, e1400. doi:10.1002/wcs.1400
57.
Noble, D. (2006). The music of life: Biology beyond genes. New York, NY: Oxford University Press.
58.
Noble, D. (2012). A theory of biological relativity: No privileged level of causation. Interface Focus, 2, 55-64. doi:10.1098/rsfs.2011.0067
59.
Orozco-Solis, R., & Sassone-Corsi, P. (2014). Epigenetic control and the circadian clock: Linking metabolism to neuronal responses. Neuroscience, 264, 76-87. doi:10.1016/j.neuroscience.2014.01.043
60.
Overton, W.F. (2010). Life-span development: Concepts and issues. In R.M. Lerner (Ed.), Handbook of life-span development. Vol. 1: Cognition, biology, and methods across the lifespan (pp. 1-29). Hoboken, NJ: Wiley.
61.
Overton, W.F., & Lerner, R.M. (2012). Relational developmental systems: A paradigm for developmental science in the postgenomic era. Behavioral and Brain Sciences, 35, 375-376. doi:10.1017/S0140525X12001082
62.
Oyama, S. (2000). The ontogeny of information. Durham, NC: Duke University Press (original work published in 1985). doi:10.1215/9780822380665
63.
Pan, Q., Shai, O., Lee, L.J., Frey, B.J., & Blencowe, B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high throughput sequencing. Nature Genetics, 40, 1413-1415. doi:10.1038/ng.259
64.
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L.E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811-813. doi:10.1038/33918
65.
Park, A. (2015, June 8). Explaining “epigenetics”: The health buzzword you need to know. http://time.com/3911161/explaining-epigenetics-the-health-buzzword-you-need-to-know/.
66.
Peedicayil, J. (2012). Role of epigenetics in pharmacotherapy, psychotherapy and nutritional management of mental disorders. Journal of Clinical Pharmacy and Therapeutics, 37, 499-501. doi:10.1111/j.1365- 2710.2012.01346.x
67.
Pinker, S. (2002). The blank slate: The modern denial of human nature. New York, NY: Viking.
68.
Plomin, R., DeFries, J.C., McClearn, G.E., & McGuffin, P. (2008). Behavioral genetics (5th ed.). New York, NY: Worth.
69.
Polderman, T.J.C., Benyamin, B., de Leeuw, C.A., Sullivan, P.F., van Bochoven, A., Visscher, P.M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702-709. doi:10.1038/ng.3285
70.
Provençal, N., Suderman, M.J., Guillemin, C., Massart, R., Ruggiero, A., Wang, D., Szyf, M., et al. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 15626-15642. doi:10.1523/JNEUROSCI.1470-12.2012
71.
Richards, E.J. (2006). Inherited epigenetic variation - Revisiting soft inheritance. Nature Reviews: Genetics, 7, 395-401. doi:10.1038/nrg1834
72.
Roth, T.L. (2012). Epigenetics of neurobiology and behavior during development and adulthood. Developmental Psychobiology, 54, 590-597. doi:10.1002/dev.20550
73.
Russo, V.E.A., Martienssen, R.A., & Riggs, A.D. (1996). Epigenetic mechanisms of gene regulation. Plainview, NY: Cold Spring Harbor Laboratory Press.
74.
Rutherford, A. (2015, July 19). Beware the pseudo gene genies. https://www.theguardian.com/science/2015/jul/19/epigenetics-dna-darwin-adam-rutherford.
75.
Schneirla, T.C. (1957). The concept of development in comparative psychology. In D.B. Harris (Ed.), The concept of development: An issue in the study of human behavior (pp. 78-108). Minneapolis, MN: University of Minnesota Press.
76.
Sinclair, K.D., Allegrucci, C., Singh, R., Gardner, D.S., Sebastian, S., Bispham, J., Young, L.E., et al. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences USA, 104, 19351-19356. doi:10.1073/pnas.0707258104
77.
Stotz, K. (2006). With “genes” like that, who needs an environment? Postgenomics's argument for the “ontogeny of information.” Philosophy of Science, 73, 905-917. doi:10.1086/518748
78.
Strahl, B.D., & Allis, D. (2000). The language of covalent histone modifications. Nature, 403, 41-45. doi:10.1038/47412
79.
Tabery, J. (2014). Beyond versus: The struggle to understand the interaction and nature and nurture. Cambridge, MA: MIT Press. doi:10.7551/mitpress/9780262027373.001.0001
80.
Tung, J., Barreiro, L.B., Johnson, Z.P., Hansen, K.D., Michopoulos, V., Toufexis, D., Gilad, Y., et al. (2012). Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proceedings of the National Academy of Sciences USA, 109, 6490-6495. doi:10.1073/pnas. 1202734109
81.
United States Department of Energy (2013, July 23). Human genome project information archive, 1990-2003. http://www.ornl.gov/hgmis.
82.
van IJzendoorn, M.H., Bakermans-Kranenburg, M.J., & Ebstein, R.P. (2011). Methylation matters in child development: Toward developmental behavioral epigenetics. Child Development Perspectives, 5, 305-310. doi:10.1111/j.1750-8606.2011.00202.x
83.
Van Speybroeck, L. (2002). From epigenesis to epigenetics: The case of C.H. Waddington. Annals of the New York Academy of Science, 981, 61-81. doi:10.1111/j.1749-6632.2002.tb04912.x
84.
Waddington, C.H. (1956). Principles of embryology. London: Allen & Unwin.
85.
Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Burge, C.B., et al. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470-476. doi:10.1038/nature07509
86.
Waterland, R.A., & Jirtle, R.L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23, 5293-5300. doi:10.1128/MCB.23.15. 5293-5300.2003
87.
Weaver, I.C.G. (2007). Epigenetic programming by maternal behavior and pharmacological intervention: Nature versus nurture: Let's call the whole thing off. Epigenetics, 2, 22-28. doi:10.4161/epi.2.1.3881
88.
Weaver, I.C.G., Cervoni, N., Champagne, F.A., D'Alessio, A.C., Sharma, S., Seckl, J.R., Meaney, M.J., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847-854. doi: 10.1038/nn1276
89.
Weaver, I.C.G., D'Alessio, A.C., Brown, S.E., Hellstron, I.C., Dymov, S., Sharma, S., Meaney, M.J., et al. (2007). The transcription factor nerve growth factor-inducible protein A mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. Journal of Neuroscience, 27, 1756-1768. doi:10.1523/JNEUROSCI.4164-06.2007
90.
Zhang, T.-Y., & Meaney, M.J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439-466. doi:10.1146/annurev.psych.60.110707.163625
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.