For more than 10 years, we have seen the emergence of new “probabilistic” models of learning. They clearly echo Jean Piaget's works and theories but they also claim to go further. However, references to Piaget are often quick and rarely take the time to explore the rich heritage of the Genevan's works. This article takes a closer look at their links through a systematic review of the literature. To do so, I selected, read, and compared articles and books about the probabilistic models of learning and the works of Jean Piaget dealing with similar questions. I will first present the theoretical evolutions offered by the probabilistic models of learning. Then, I will reexamine the words and works of Jean Piaget to show how he had in fact formulated and addressed similar questions at his time, from his point of view. I will finally discuss how we could question, today, Jean Piaget's works in regard to these new models, but also how these new models could be discussed with regard to Piagetian works.

1.
Abrahamson, D., Shayan, S., Bakker, A., & Van der Schaaf, M. (2015). Eye-tracking Piaget: Capturing the emergence of attentional anchors in the coordination of proportional motor action. Human Development,58, 218-244. doi:10.1159/000443153
2.
Asch, S.E. (1952). Social psychology. Englewood Cliffs, NJ: Prentice-Hall. doi:10.1037/10025-000
3.
Barth, H., La Mont, K., Lipton, L., & Spelke, E. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116-14121.
4.
Billett, S. (2001). Learning in the workplace: Strategies for effective practice. Crows Nest, Australia: Allen & Unwin.
5.
Blaisdell, A.P., Sawa, K., Leising K.J., & Waldmann, M.R. (2006). Causal reasoning in rats. Science,311, 1020-1022. doi:10.1126/science.1121872
6.
Buschbaum, D., Bridgers, S., Weisberg, D., & Gopnik, A. (2012). The power of possibility: Causal learning, counterfactual reasoning and pretend play. Philosophical Transactions of the Royal Society B,367, 2202-2212. doi:10.1098/rstb.2012.0122
7.
Campbell, R.L. (2009). Genetic epistemology and constructivism. In U. Müller, J. Carpendale, & L. Smith (Eds.), The Cambridge companion to Piaget (pp. 150-170). New York, NY: Cambridge University Press. doi:10.1017/CCOL9780521898584.007
8.
Carey, S. (2009). The origin of concepts. New York: Oxford University Press.
9.
Chalon Blanc, A. (2011). Piaget: constructivisme, intelligence: L'avenir d'une théorie. Villeneuve D'Ascq, France: Presses Universitaires du Septentrion.
10.
Chi, T.H., Glaser, R., & Farr, M.J. (1988). The nature of expertise. Hillsdale, NJ: Lawrence Erlbaum Associates.
11.
Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition,58, 1-73.
12.
Dehaene, S. (2011). Le cerveau statisticien - la revolution Bayésienne en sciences cognitives. Cours de psychologie expérimentale de 2011-2012 au Collège de France. Retrieved from: http://www.college-de-france.fr/site/stanislas-dehaene/course-2011-2012.htm
13.
Dewey, J. (1916). Democracy and education: An introduction to the philosophy of education. New York, NY: McMillan.
14.
Evans, J. (2009). Does rational analysis stand up to rational analysis? Behavioral and Brain Sciences,32, 88-89. doi:10.1017/S0140525X09000338
15.
Gallagher, J., & Reid, K. (2002). The learning theory of Piaget and Inhelder. Lincoln, NE: iUniverse.
16.
Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1, 107-143. doi:10.1111/j.1756-8765.2008.01006.x
17.
Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review,102, 684-704. doi:10.1037/0033-295X.102.4.684
18.
Glymour, C. (2001). The mind's arrows: Bayes nets and graphical causal models in psychology. Cambridge, MA: MIT Press.
19.
Goldszmidt, M., & Pearl, J. (1996). Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence,84, 57-112. doi:10.1016/0004-3702(95)00090-9
20.
Gonzales, M., & Girotto, V. (2011). Combinatorics and probabilities: Six- to ten-year-olds reliably predict whether a relation will occur. Cognition,120, 372-379. doi:10.1016/j.cognition.2010.10.006.
21.
Gopnik, A. (1996). The post-Piaget era. Psychological Science, 7, 221-225. doi:10.1111/j.1467-9280.1996.tb00363.xopn
22.
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review,111, 3-32. doi:10.1037/0033-295X.111.1.3
23.
Gopnik, A., & Wellman, H. M. (1994). The theory theory. In L. Hirschfeld & S. Gelman (Eds.), Mapping the mind:Domain specificity in cognition and culture (pp. 257-293). New York, NY: Cambridge University Press.
24.
Gopnik, A., & Wellman, H. (2012). Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory. Psychological Bulletin,138, 1085-1108. doi:10.1037/a0028044
25.
Griffiths, T. (2009). The strengths of - and some of the challenges of - Bayesian models of cognition. Behavioral and Brain Science,32, 89-90. doi:10.1017/S0140525X0900034X
26.
Griffiths, T.L., Kemp, C., & Tenenbaum, J.B. (2008). Bayesian models of cognition. In R. Sun (Eds.), Cambridge handbook of computational cognitive modeling. Cambridge, UK: Cambridge University Press. doi:10.1017/cbo9780511816772.006
27.
Griffiths, T., & Tenenbaum, J.B. (2009). Theory-based causal induction. Psychological Review,116, 661-716. doi:10.1037/a0017201
28.
Halbwachs, F. (1971). Réflexions sur la causalité physique. In J. Piaget & M.A. Bunge (Eds.), Les théories de la causalité (pp. 19-36). Paris, France: Presses Universitaires de France.
29.
Inhelder, B. (1977/2002). Genetic epistemology and developmental psychology. In J.M. Gallagher & K. Reid (Eds.), The learning theory of Piaget and Inhelder (pp. 186-198). Lincoln, NE: Author's Choice Press.
30.
Knill, D.C., & Richards, W. (1996). Perception as Bayesian inference. New York, NY: Cambridge University Press. doi:10.1017/CBO9780511984037
31.
Kusel, I. (2014). A computational model of the emergence of seriation in the young child. Unpublished doctoral dissertation. Milton Keynes, UK: The Open University.
32.
Kushnir, T., & Gopnik, A. (2007). Conditional probability versus spatial contiguity in causal learning: Preschoolers use new contingency evidence to overcome prior spatial assumptions. Developmental Psychology,43,186-196. doi:10.1037/0012-1649.43.1.186
33.
Kushnir, T., Xu, F., & Wellman, H. (2010). Young children use statistical sampling to infer the preferences of other people. Psychological Science,21, 1134-1140. doi:10.1177/0956797610376652
34.
McGonigle-Chalmers, M., & Kusel, I. (2012). The emergence of linear sequencing in children: A continuity account and a formal model. In D. McFarland, K. Stenning, & M. McGonigle (Eds.), The complex mind: An interdisciplinary approach (pp. 55-80). Basingstoke, UK: Palgrave Macmillan. doi:10.1057/9780230354456.0010
35.
Müller, U., Carpendale, J., & Smith, L. (2009). Introduction I. The context of Piaget's theory. In U. Müller, J. Carpendale, & L. Smith (Eds.), The Cambridge companion to Piaget (pp. 1-18). New York, NY: Cambridge University Press.
36.
Nucci, L. (2013). The personal and the moral. In M. Killen & J. Smetana (Eds.), Handbook of moral development (pp. 538-558). New York, NY: Routledge.
37.
Nucci, L., Saxe, G., & Turiel, E. (2000). Culture, thought and development. Hillsdale, NJ: Lawrence Erlbaum Associates.
38.
Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford, UK: Oxford University Press.
39.
Oaksford, M., & Chater, N. (2009). Précis of Bayesian rationality: The probabilistic approach to human reasoning. Behavioral and Brain Sciences,32, 69-120. doi:10.1017/S0140525X09000284
40.
Pearl, J. (1999). Bayesian networks. In R.A. Wilson & F.C. Keil (Eds), MIT encyclopedia of the cognitive sciences (pp. 72-74). Cambridge, MA: MIT Press.
41.
Pearl, J. (2000). Causality. Models, reasoning and inference. Cambridge, UK: Cambridge University Press.
42.
Pearl, J. (2009). Causality. Models, reasoning and inference. Cambridge: Cambridge University Press (2nd ed.).
43.
Peirce, C.S. (1955). The Philosophy of Peirce: Selected Writings. In J. Buchler (Ed.). New York, NY: Dover Publications.
44.
Piaget, J. (1926). La representation du monde chez l'enfant. Paris, France: Presses Universitaires de France.
45.
Piaget, J. (1947). Psychologie de l'intelligence. Paris, France: Armand Colin.
46.
Piaget, J. (1950). La réversibilité de la pensée et les opérations logiques. Bulletin de la Société Française de Philosophie,44, 137-164.
47.
Piaget, J. (1955). De la logique de l'enfant à la logique de l'adolescent: Essai sur la construction des structures opératoires formelles. Paris, France: Presses Universitaires de France.
48.
Piaget, J. (1967). Logique et connaissance scientifique. In Encyclopédie de La Pléiade. Paris, France: Gallimard.
49.
Piaget, J. (1971a). Les théories de la causalité. Paris, France: Presses Universitaires de France.
50.
Piaget, J. (1971b). Les explications causales. Paris, France: Presses Universitaires de France.
51.
Piaget, J. (1974a). Understanding causality. Toronto, Canada: G.J. McLeod Limited.
52.
Piaget, J. (1974b). La prise de conscience. Paris, France: Presses Universitaires de France.
53.
Piaget, J. (1975). L'équilibration des structures cognitives. Problème central du développement. Paris, France: Presses Universitaires de France.
54.
Piaget, J. (1980). Adaptation and intelligence. Chicago, IL: University of Chicago Press.
55.
Piaget, J. (1985). Equilibration of cognitive structures. Chicago, IL: University of Chicago Press.
56.
Piaget, J., & Inhelder, B. (1941). Le développement des quantités chez l'enfant: conservation et atomisme. Paris: Delachaux et Niestlé.
57.
Piaget, J., & Inhelder, B. (1951). La génèse de l'idée de hasard chez l'enfant. Paris, France: Presses Universitaires de France.
58.
Piaget, J., & Inhelder, B. (1968). Mémoire et intelligence. Paris, France: Presses Universitaires de France.
59.
Piaget, J., & Inhelder, B. (1973). Memory and intelligence. New York, NY: Basic Books.
60.
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science,306, 499-503. doi:10.1126/science.1102085
61.
Pouget, A., Beck, J., Ma, W.J., & Latham, P.E. (2013). Probabilistic brains: Knowns and unknowns. Nature Neurosci ence, 16, 1170-1178. doi:10.1038/nn.3495
62.
Redelmeier, D.A., & Tversky, A. (1996). On the belief that arthritis pain is related to the weather. Proceedings of the National Academy of Sciences,93, 2895-2896. doi:10.1073/pnas.93.7.2895
63.
Tenenbaum, J.B., Kemp, C., Griffiths, T.L., & Goodman, N.D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science,331, 1279-1285. doi:0.1126/science.1192788
64.
Tourmen, C., Berriet-Solliec, M., & Lepicier, D. (2016, under review). The spontaneous theoreticians: How evaluators build and revise their knowledge of programs through experience. American Journal of Evaluation.
65.
Turiel, E. (1983). The development of social knowledge: Morality and convention. Cambridge, UK: Cambridge University Press.
66.
Valsiner, J. (2007). Culture in minds and societies: Foundations of cultural psychology. New Delhi, India: Sage.
67.
Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques,10, 133-170.
68.
Waldmann, M.R., Hagmayer, Y., & Blaisdell, P. (2006). Beyond the information given: Causal models in learning and reasoning. Current Directions in Psychological Science,15, 307-311. doi:10.1111/j.1467-8721.2006.00458.x
69.
Witherington, D.C. (2007). The dynamic systems approach as metatheory for developmental psychology. Human Development,50, 127-153. doi:10.1159/000100943
70.
Xu, F., & Griffiths, T. (2011). Probabilistic models of cognitive development: Towards a rational constructivist approach to the study of learning and development. Cognition, 120, 299-301. doi:10.1016/j.cognition.2011.06.008
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.