Introduction: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. At present, the pathogenesis has not been clarified, and the clinical application of drugs and lifestyle intervention may not prevent disease progression. This study aimed to investigate how circ_0043314 regulates ovarian granulosa cell biological functions to provide a theoretical basis for the treatment of patients with PCOS. MicroRNA (miR)-146b-3p/Apelin 13 axis was used to investigate the mechanism by which circ_0043314 regulated ovarian granulosa cell proliferation and apoptosis in PCOS via miR-146b-3p/Apelin 13 axis. Participants/Materials, Methods: Ovarian tissues (cortical tissues) from 35 PCOS patients and 35 normal controls, as well as HEK293T and human ovarian granulosa cell line (KGN, COV434), were included in this study. We examined the expression levels of circ_0043314, miR-146b-3p, and Apelin 13 in PCOS tissues. Ovarian granulosa cells were transfected with corresponding plasmids to clarify the influence of circ_0043314, miR-146b-3p, or Apelin 13 on proliferation and apoptosis of ovarian granulosa cells through MTT and flow cytometry assays. Moreover, the relationships among circ_0043314, miR-146b-3p, and Apelin 13 were analyzed through dual-luciferase and RNA immunoprecipitation assays. Results: Circ_0043314 and Apelin 13 were highly expressed and miR-146b-3p was lowly expressed in ovarian tissues of PCOS compared with non-PCOS controls. Downregulation of circ_0043314 or upregulation of miR-146b-3p hindered ovarian granulosa cell proliferation and advanced its apoptosis. Downregulation of miR-146b-3p reversed the impacts of downregulation of circ_0043314, and overexpression of Apelin 13 counteracted the influences of upregulation of miR-146b-3p in ovarian granulosa cells. Mechanically, circ_0043314 could bind to miR-146b-3p, and miR-146b-3p directly targeted and modulated Apelin 13 expression. Limitations: This study was limited by the lack of animal experiments. Conclusion: Our data demonstrated that circ_0043314 enhances ovarian granulosa cell proliferation and suppresses its apoptosis via miR-146b-3p/Apelin 13 axis.

1.
Escobar-Morreale
HF
.
Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment
.
Nat Rev Endocrinol
.
2018
;
14
(
5
):
270
84
.
2.
Pei
CZ
,
Jin
L
,
Baek
KH
.
Pathogenetic analysis of polycystic ovary syndrome from the perspective of omics
.
Biomed Pharmacother
.
2021
;
142
:
112031
.
3.
Azziz
R
.
Polycystic ovary syndrome
.
Obstet Gynecol
.
2018
;
132
(
2
):
321
36
.
4.
Osibogun
O
,
Ogunmoroti
O
,
Michos
ED
.
Polycystic ovary syndrome and cardiometabolic risk: opportunities for cardiovascular disease prevention
.
Trends Cardiovasc Med
.
2020
;
30
(
7
):
399
404
.
5.
Barber
TM
,
Dimitriadis
GK
,
Andreou
A
,
Franks
S
.
Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance
.
Clin Med
.
2016
;
16
(
3
):
262
6
.
6.
Wu
Y
,
Zhang
Z
,
Liao
X
,
Wang
Z
.
High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development
.
Biochem Biophys Res Commun
.
2015
;
466
(
3
):
599
605
.
7.
Henriquez
S
,
Kohen
P
,
Xu
X
,
Villarroel
C
,
Munoz
A
,
Godoy
A
, et al
.
Significance of pro-angiogenic estrogen metabolites in normal follicular development and follicular growth arrest in polycystic ovary syndrome
.
Hum Reprod
.
2020
;
35
(
7
):
1655
65
.
8.
Hoeger
KM
,
Dokras
A
,
Piltonen
T
.
Update on PCOS: consequences, challenges, and guiding treatment
.
J Clin Endocrinol Metab
.
2021
;
106
(
3
):
e1071
83
.
9.
Sadeghi
HM
,
Adeli
I
,
Calina
D
,
Docea
AO
,
Mousavi
T
,
Daniali
M
, et al
.
Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing
.
Int J Mol Sci
.
2022
;
23
(
2
):
583
.
10.
Yang
L
,
Du
X
,
Wang
S
,
Lin
C
,
Li
Q
,
Li
Q
.
A regulatory network controlling ovarian granulosa cell death
.
Cell Death Discov
.
2023
;
9
(
1
):
70
.
11.
Das
M
,
Djahanbakhch
O
,
Hacihanefioglu
B
,
Saridogan
E
,
Ikram
M
,
Ghali
L
, et al
.
Granulosa cell survival and proliferation are altered in polycystic ovary syndrome
.
J Clin Endocrinol Metab
.
2008
;
93
(
3
):
881
7
.
12.
Gao
Q
,
Wang
T
,
Pan
L
,
Qian
C
,
Wang
J
,
Xin
Q
, et al
.
Circular RNAs: novel potential regulators in embryogenesis, female infertility, and pregnancy-related diseases
.
J Cell Physiol
.
2021
;
236
(
10
):
7223
41
.
13.
Zhang
J
,
Wang
C
,
Jia
C
,
Zhang
Y
,
Qing
X
,
Zhang
Y
, et al
.
The role of circular RNAs in the physiology and pathology of the mammalian ovary
.
Int J Mol Sci
.
2022
;
23
(
23
):
15204
.
14.
Huang
P
,
Du
S
,
Lin
Y
,
Huang
Z
,
Li
H
,
Chen
G
, et al
.
Identification of three potential circRNA biomarkers of polycystic ovary syndrome by bioinformatics analysis and validation
.
Int J Gen Med
.
2021
;
14
:
5959
68
.
15.
Mazloomi
S
,
Mousavi
V
,
Aghadavod
E
,
Mafi
A
.
Circular RNAs: emerging modulators in the pathophysiology of polycystic ovary syndrome and their clinical implications
.
Curr Mol Med
.
2024
;
24
(
2
):
153
66
.
16.
Abdalla
M
,
Deshmukh
H
,
Atkin
SL
,
Sathyapalan
T
.
miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): a review
.
Life Sci
.
2020
;
259
:
118174
.
17.
Tamaddon
M
,
Azimzadeh
M
,
Tavangar
SM
.
microRNAs and long non-coding RNAs as biomarkers for polycystic ovary syndrome
.
J Cel Mol Med
.
2022
;
26
(
3
):
654
70
.
18.
Wei
Q
,
Xue
H
,
Sun
C
,
Li
J
,
He
H
,
Amevor
FK
, et al
.
Gga-miR-146b-3p promotes apoptosis and attenuate autophagy by targeting AKT1 in chicken granulosa cells
.
Theriogenology
.
2022
;
190
:
52
64
.
19.
Roche
J
,
Rame
C
,
Reverchon
M
,
Mellouk
N
,
Rak
A
,
Froment
P
, et al
.
Apelin (APLN) regulates progesterone secretion and oocyte maturation in bovine ovarian cells
.
Reproduction
.
2017
;
153
(
5
):
589
603
.
20.
Wang
W
,
Ge
L
,
Zhang
L
,
Liu
L
,
Zhang
X
,
Ma
X
.
MicroRNA-16 represses granulosa cell proliferation in polycystic ovarian syndrome through inhibition of the PI3K/Akt pathway by downregulation of Apelin13
.
Hum Fertil
.
2021
;
26
(
3
):
611
21
.
21.
Dudekula
DB
,
Panda
AC
,
Grammatikakis
I
,
De
S
,
Abdelmohsen
K
,
Gorospe
M
.
CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs
.
RNA Biol
.
2016
;
13
(
1
):
34
42
.
22.
Ge
X
,
Xu
B
,
Xu
W
,
Xia
L
,
Xu
Z
,
Shen
L
, et al
.
Long noncoding RNA GAS5 inhibits cell proliferation and fibrosis in diabetic nephropathy by sponging miR-221 and modulating SIRT1 expression
.
Aging
.
2019
;
11
(
20
):
8745
59
.
23.
Gebremedhn
S
,
Ali
A
,
Hossain
M
,
Hoelker
M
,
Salilew-Wondim
D
,
Anthony
RV
, et al
.
MicroRNA-mediated gene regulatory mechanisms in mammalian female reproductive health
.
Int J Mol Sci
.
2021
;
22
(
2
):
938
.
24.
Zhang
C
,
Liu
J
,
Lai
M
,
Li
J
,
Zhan
J
,
Wen
Q
, et al
.
Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome
.
Arch Gynecol Obstet
.
2019
;
300
(
2
):
431
40
.
25.
Xu
L
,
Xiong
F
,
Bai
Y
,
Xiao
J
,
Zhang
Y
,
Chen
J
, et al
.
Circ_0043532 regulates miR-182/SGK3 axis to promote granulosa cell progression in polycystic ovary syndrome
.
Reprod Biol Endocrinol
.
2021
;
19
(
1
):
167
.
26.
Tu
P
,
Yan
S
,
Zhang
F
.
Circ_0005925 promotes granulosa cell growth by targeting MiR-324-3p to upregulate MAP2K6 in polycystic ovary syndrome
.
Biochem Genet
.
2023
;
61
(
1
):
21
34
.
27.
Li
Q
,
Du
X
,
Liu
L
,
Liu
H
,
Pan
Z
,
Li
Q
.
Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1
.
Domest Anim Endocrinol
.
2021
;
74
:
106509
.
28.
Zeng
H
,
Fu
Y
,
Shen
L
,
Quan
S
.
MicroRNA signatures in plasma and plasma exosome during window of implantation for implantation failure following in-vitro fertilization and embryo transfer
.
Reprod Biol Endocrinol
.
2021
;
19
(
1
):
180
.
29.
Yu
Y
,
Zhang
Q
,
Sun
K
,
Xiu
Y
,
Wang
X
,
Wang
K
, et al
.
Long non-coding RNA BBOX1 antisense RNA 1 increases the apoptosis of granulosa cells in premature ovarian failure by sponging miR-146b
.
Bioengineered
.
2022
;
13
(
3
):
6092
9
.
30.
Gupta
M
,
Korde
JP
,
Bahiram
KB
,
Sardar
VM
,
Kurkure
NV
.
Expression and localization of apelin and apelin receptor (APJ) in buffalo ovarian follicles and corpus luteum and the in-vitro effect of apelin on steroidogenesis and survival of granulosa cells
.
Theriogenology
.
2023
;
197
:
240
51
.
31.
Tekin
S
,
Erden
Y
,
Sandal
S
,
Etem Onalan
E
,
Ozyalin
F
,
Ozen
H
, et al
.
Effects of apelin on reproductive functions: relationship with feeding behavior and energy metabolism
.
Arch Physiol Biochem
.
2017
;
123
(
1
):
9
15
.
You do not currently have access to this content.