Background: Mitochondrial integrity and efficiency deteriorate with age and are linked to cellular senescence. Mitochondria are highly responsive to reduced oxygen availability (hypoxia), which, e.g., occurs when exposed to altitude. We hypothesize that mitochondria are involved in the observed health benefits at moderate altitude. Because the experimental evidence on mitochondrial changes at moderate altitude is limited, we also evaluate dose-response associations of oxygen transport and mitochondrial functions derived from measurements at normoxia and severe hypoxia. Summary: We summarize the effects of environmental oxygen availability and changes in cellular oxygen demand/supply on mitochondrial functions and assess, how this may influence aging. Hypotheses are presented how mild hypoxia at moderate altitude (1,000–2,500 m) could improve mitochondrial function and possibly explain the reported lower levels of mortality from several age-related diseases. Key Messages: It is unknown, whether continuous or intermittent types of hypoxia exposure are more effective in improving mitochondrial functions and promoting healthy aging. The combination of tissue-specific oxygen demand (e.g., during physical exercise) with mild reductions of ambient oxygen availability may enable the reported health benefits associated with moderate altitude residence.

1.
Harrington
JS
,
Ryter
SW
,
Plataki
M
,
Price
DR
,
Choi
AMK
.
Mitochondria in health, disease, and aging
.
Physiol Rev
.
2023
;
103
(
4
):
2349
422
.
2.
Martini
H
,
Passos
JF
.
Cellular senescence: all roads lead to mitochondria
.
FEBS J
.
2023
;
290
(
5
):
1186
202
.
3.
Guo
Y
,
Guan
T
,
Shafiq
K
,
Yu
Q
,
Jiao
X
,
Na
D
, et al
.
Mitochondrial dysfunction in aging
.
Ageing Res Rev
.
2023
;
88
:
101955
.
4.
López-Polo
V
,
Maus
M
,
Zacharioudakis
E
,
Lafarga
M
,
Attolini
CS
,
Marques
FDM
, et al
.
Release of mitochondrial dsRNA into the cytosol is a key driver of the inflammatory phenotype of senescent cells
.
Nat Commun
.
2024
;
15
(
1
):
7378
.
5.
Burtscher
J
,
Samaja
M
.
Healthy aging at moderate altitudes: hypoxia and hormesis
.
Gerontology
.
2024
;
70
(
11
):
1152
60
.
6.
van Vliet
T
,
Casciaro
F
,
Demaria
M
.
To breathe or not to breathe: understanding how oxygen sensing contributes to age-related phenotypes
.
Ageing Res Rev
.
2021
;
67
:
101267
.
7.
Mehta
R
,
Steinkraus
KA
,
Sutphin
GL
,
Ramos
FJ
,
Shamieh
LS
,
Huh
A
, et al
.
Proteasomal regulation of the hypoxic response modulates aging in C. elegans
.
Science
.
2009
;
324
(
5931
):
1196
8
.
8.
Burtscher
J
,
Mallet
RT
,
Burtscher
M
,
Millet
GP
.
Hypoxia and brain aging: neurodegeneration or neuroprotection
.
Ageing Res Rev
.
2021
;
68
:
101343
.
9.
Murray
AJ
,
Horscroft
JA
.
Mitochondrial function at extreme high altitude
.
J Physiol
.
2016
;
594
(
5
):
1137
49
.
10.
Luks
AM
,
Hackett
PH
.
Medical conditions and high-altitude travel
.
N Engl J Med
.
2022
;
386
(
4
):
364
73
.
11.
Grocott
MP
,
Martin
DS
,
Levett
DZ
,
McMorrow
R
,
Windsor
J
,
Montgomery
HE
, et al
.
Arterial blood gases and oxygen content in climbers on Mount Everest
.
N Engl J Med
.
2009
;
360
(
2
):
140
9
.
12.
Murray
AJ
.
Energy metabolism and the high‐altitude environment
.
Exp Physiol
.
2016
;
101
(
1
):
23
7
.
13.
Shi
XF
,
Carlson
PJ
,
Kim
TS
,
Sung
YH
,
Hellem
TL
,
Fiedler
KK
, et al
.
Effect of altitude on brain intracellular pH and inorganic phosphate levels
.
Psychiatry Res
.
2014
;
222
(
3
):
149
56
.
14.
Hwang
J
,
DeLisi
LE
,
Öngür
D
,
Riley
C
,
Zuo
C
,
Shi
X
, et al
.
Cerebral bioenergetic differences measured by phosphorus-31 magnetic resonance spectroscopy between bipolar disorder and healthy subjects living in two different regions suggesting possible effects of altitude
.
Psychiatry Clin Neurosci
.
2019
;
73
(
9
):
581
9
.
15.
Gvozdjáková
A
,
Kucharská
J
,
Miklovicová
E
,
Rajecová
O
,
Gvozdják
J
.
Metabolic adaptation of myocardial mitochondria to mild altitude hypoxia
.
Int J Cardiol
.
1992
;
36
(
1
):
103
6
.
16.
Gassmann
M
,
Mairbäurl
H
,
Livshits
L
,
Seide
S
,
Hackbusch
M
,
Malczyk
M
, et al
.
The increase in hemoglobin concentration with altitude varies among human populations
.
Ann N Y Acad Sci
.
2019
;
1450
(
1
):
204
20
.
17.
Okoye
CN
,
Koren
SA
,
Wojtovich
AP
.
Mitochondrial complex I ROS production and redox signaling in hypoxia
.
Redox Biol
.
2023
;
67
:
102926
.
18.
Moreno-Domínguez
A
,
Colinas
O
,
Arias-Mayenco
I
,
Cabeza
JM
,
López-Ogayar
JL
,
Chandel
NS
, et al
.
Hif1α-dependent mitochondrial acute O(2) sensing and signaling to myocyte Ca(2+) channels mediate arterial hypoxic vasodilation
.
Nat Commun
.
2024
;
15
(
1
):
6649
.
19.
Burtscher
J
,
Mallet
RT
,
Pialoux
V
,
Millet
GP
,
Burtscher
M
.
Adaptive responses to hypoxia and/or hyperoxia in humans
.
Antioxid Redox Signal
.
2022
;
37
(
13–15
):
887
912
.
20.
Chicco
AJ
,
Le
CH
,
Gnaiger
E
,
Dreyer
HC
,
Muyskens
JB
,
D’Alessandro
A
, et al
.
Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from AltitudeOmics
.
J Biol Chem
.
2018
;
293
(
18
):
6659
71
.
21.
Hernansanz-Agustín
P
,
Enríquez
JA
.
Generation of reactive oxygen species by mitochondria
.
Antioxidants
.
2021
;
10
(
3
):
415
.
22.
Burtscher
J
,
Citherlet
T
,
Camacho-Cardenosa
A
,
Camacho-Cardenosa
M
,
Raberin
A
,
Krumm
B
, et al
.
Mechanisms underlying the health benefits of intermittent hypoxia conditioning
.
J Physiol
.
2024
;
602
(
21
):
5757
83
.
23.
Gnaiger
E
.
Complex II ambiguities-FADH(2) in the electron transfer system
.
J Biol Chem
.
2024
;
300
(
1
):
105470
.
24.
Burtscher
J
,
Denti
V
,
Gostner
JM
,
Weiss
AKH
,
Strasser
B
,
Hüfner
K
, et al
.
The interplay of NAD and hypoxic stress and its relevance for ageing
.
Ageing Res Rev
.
2025
;
104
:
102646
.
25.
Gomes
AP
,
Price
NL
,
Ling
AJ
,
Moslehi
JJ
,
Montgomery
MK
,
Rajman
L
, et al
.
Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
.
Cell
.
2013
;
155
(
7
):
1624
38
.
26.
Jacobs
RA
,
Siebenmann
C
,
Hug
M
,
Toigo
M
,
Meinild
AK
,
Lundby
C
.
Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria
.
FASEB J
.
2012
;
26
(
12
):
5192
200
.
27.
Jacobs
RA
,
Boushel
R
,
Wright-Paradis
C
,
Calbet
JA
,
Robach
P
,
Gnaiger
E
, et al
.
Mitochondrial function in human skeletal muscle following high-altitude exposure
.
Exp Physiol
.
2013
;
98
(
1
):
245
55
.
28.
He
YL
,
Li
J
,
Gong
SH
,
Cheng
X
,
Zhao
M
,
Cao
Y
, et al
.
BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia
.
Cell Death Dis
.
2022
;
13
(
11
):
966
.
29.
Hu
Y
,
Sun
Q
,
Li
Z
,
Chen
J
,
Shen
C
,
Song
Y
, et al
.
High basal level of autophagy in high-altitude residents attenuates myocardial ischemia-reperfusion injury
.
J Thorac Cardiovasc Surg
.
2014
;
148
(
4
):
1674
80
.
30.
Levett
DZ
,
Viganò
A
,
Capitanio
D
,
Vasso
M
,
De Palma
S
,
Moriggi
M
, et al
.
Changes in muscle proteomics in the course of the caudwell research expedition to Mt. Everest
.
Proteomics
.
2015
;
15
(
1
):
160
71
.
31.
Irazoki
A
,
Martinez-Vicente
M
,
Aparicio
P
,
Aris
C
,
Alibakhshi
E
,
Rubio-Valera
M
, et al
.
Coordination of mitochondrial and lysosomal homeostasis mitigates inflammation and muscle atrophy during aging
.
Aging Cell
.
2022
;
21
(
4
):
e13583
.
32.
Aragón-Vela
J
,
Casuso
RA
,
Aparisi
AS
,
Plaza-Díaz
J
,
Rueda-Robles
A
,
Hidalgo-Gutiérrez
A
, et al
.
Early heart and skeletal muscle mitochondrial response to a moderate hypobaric hypoxia environment
.
J Physiol
.
2024
;
602
(
21
):
5631
41
.
33.
Lindholm
ME
,
Rundqvist
H
.
Skeletal muscle hypoxia-inducible factor-1 and exercise
.
Exp Physiol
.
2016
;
101
(
1
):
28
32
.
34.
Ehrenreich
H
,
Gassmann
M
,
Poustka
L
,
Burtscher
M
,
Hammermann
P
,
Sirén
AL
, et al
.
Exploiting moderate hypoxia to benefit patients with brain disease: molecular mechanisms and translational research in progress
.
Neuroprotection
.
2023
;
1
(
1
):
9
19
.
35.
Mennen
SS
,
Franta
M
,
Begemann
M
,
Wilke
JBH
,
Schröder
R
,
Butt
UJ
, et al
.
Tolerability and first hints for potential efficacy of motor-cognitive training under inspiratory hypoxia in health and neuropsychiatric disorders: a translational viewpoint
.
Neuroprotection
.
2024
;
2
(
3
):
228
42
.
36.
Yeo
E-J
.
Hypoxia and aging
.
Exp Mol Med
.
2019
;
51
(
6
):
1
15
.
37.
Rogers
RS
,
Wang
H
,
Durham
TJ
,
Stefely
JA
,
Owiti
NA
,
Markhard
AL
, et al
.
Hypoxia extends lifespan and neurological function in a mouse model of aging
.
PLoS Biol
.
2023
;
21
(
5
):
e3002117
.
38.
Grange
RMH
,
Sharma
R
,
Shah
H
,
Reinstadler
B
,
Goldberger
O
,
Cooper
MK
, et al
.
Hypoxia ameliorates brain hyperoxia and NAD(+) deficiency in a murine model of Leigh syndrome
.
Mol Genet Metab
.
2021
;
133
(
1
):
83
93
.
39.
Blume
SY
,
Garg
A
,
Martí-Mateos
Y
,
Midha
AD
,
Chew
BTL
,
Lin
B
, et al
.
HypoxyStat, a small-molecule form of hypoxia therapy that increases oxygen-hemoglobin affinity
.
Cell
.
2025
;
188
(
6
):
1580
8.e11
.
40.
Rogers
RS
,
Mootha
VK
.
Hypoxia as a medicine
.
Sci Transl Med
.
2025
;
17
(
782
):
eadr4049
.
You do not currently have access to this content.