Background: Presently, diagnosing delirium in older people is a challenge. Diagnostic support tools such as the Confusion Assessment Method and 4AT provide structure but require specialist training, resources, and implementation support, while some subjectivity persists in diagnosis. This is particularly the case in people who live with dementia who often experience rapid fluctuation in cognitive abilities and behaviours. This leads to variation in diagnosis between settings and care providers, with consequent harmful impact on those experiencing delirium. These challenges become greater in care homes where dementia is prevalent, daily fluctuation is the norm, and the majority of staff are not trained healthcare professionals. Summary: Here, we outline the potential for AI-based human activity recognition (HAR) approaches to identify and flag deviations from normal behaviour that may be precursors of a delirium state, enabling earlier detection and management, and better outcomes. We outline how statistical process control approaches could form the basis of diagnostic algorithms and the steps required to test the feasibility of this approach in the care home setting. Key Messages: Delirium detection and diagnosis, difficult in any setting, are more difficult in care homes because of resident, staff, and organisational factors. Artificial intelligence, machine learning, and HAR have potential to make diagnosis more reliable because of their ability to recognise changes from normal patterns of behaviour at an individual level.

1.
American Psychiatric Association
.
Diagnostic and statistical manual of mental disorders
. 5th ed.
Arlington
;
2013
.
2.
Anand
A
,
MacLullich
AMJ
.
Delirium in older adults
.
Medicine
.
2021
;
49
(
1
):
26
31
.
3.
Inouye
SK
,
Rushing
JT
,
Foreman
MD
,
Palmer
RM
,
Pompei
P
.
Does delirium contribute to poor hospital outcomes? a three-site epidemiologic study
.
J Gen Intern Med
.
1998
;
13
(
4
):
234
42
.
4.
Han
JH
,
Wilson
A
,
Schnelle
JF
,
Dittus
RS
,
Ely
EW
.
An evaluation of single question delirium screening tools in older emergency department patients
.
Am J Emerg Med
.
2018
;
36
(
7
):
1249
52
.
5.
Gordon
AL
,
Franklin
M
,
Bradshaw
L
,
Logan
P
,
Elliott
R
,
Gladman
JRF
.
Health status of UK care home residents: a cohort study
.
Age Ageing
.
2014
;
43
(
1
):
97
103
.
6.
Livingston
G
,
Barber
J
,
Marston
L
,
Rapaport
P
,
Livingston
D
,
Cousins
S
, et al
.
Prevalence of and associations with agitation in residents with dementia living in care homes: MARQUE cross-sectional study
.
BJPsych Open
.
2017
;
3
(
4
):
171
8
.
7.
Gordon
AL
,
Goodman
C
,
Davies
SL
,
Dening
T
,
Gage
H
,
Meyer
J
, et al
.
Optimal healthcare delivery to care homes in the UK: a realist evaluation of what supports effective working to improve healthcare outcomes
.
Age Ageing
.
2018
;
47
(
4
):
595
603
.
8.
Komici
K
,
Guerra
G
,
Addona
F
,
Fantini
C
.
Delirium in nursing home residents: a narrative review
.
Healthc
.
2022
;
10
(
8
):
1544
.
9.
Wei
LA
,
Fearing
MA
,
Sternberg
EJ
,
Inouye
SK
.
The Confusion Assessment Method: a systematic review of current usage
.
J Am Geriatr Soc
.
2008
;
56
(
5
):
823
30
.
10.
Shenkin
SD
,
Fox
C
,
Godfrey
M
,
Siddiqi
N
,
Goodacre
S
,
Young
J
, et al
.
Delirium detection in older acute medical inpatients: a multicentre prospective comparative diagnostic test accuracy study of the 4AT and the confusion assessment method
.
BMC Med
.
2019
;
17
(
1
):
138
.
11.
Maybrier
HR
,
Mickle
AM
,
Escallier
KE
,
Lin
N
,
Schmitt
EM
,
Upadhyayula
RT
, et al
.
Reliability and accuracy of delirium assessments among investigators at multiple international centres
.
BMJ Open
.
2018
;
8
(
11
):
e023137
.
12.
Implementing delirium screening - the 4 ‘A’s test for detecting delirium in acute medical patients: a diagnostic accuracy study
.
NCBI Bookshelf
. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544928/ (accessed 30th September, 2024).
13.
Siddiqi
N
,
Young
J
,
House
AO
,
Featherstone
I
,
Hopton
A
,
Martin
C
, et al
.
Stop Delirium! A complex intervention to prevent delirium in care homes: a mixed-methods feasibility study
.
Age Ageing
.
2011
;
40
(
1
):
90
8
.
14.
Boockvar
KS
,
Judon
KM
,
Eimicke
JP
,
Teresi
JA
,
Inouye
SK
.
Hospital elder life program in long-term care (HELP-LTC): a cluster randomized controlled trial
.
J Am Geriatr Soc
.
2020
;
68
(
10
):
2329
35
.
15.
Devi
R
,
Chadborn
NH
,
Meyer
J
,
Banerjee
J
,
Goodman
C
,
Dening
T
, et al
.
How quality improvement collaboratives work to improve healthcare in care homes: a realist evaluation
.
Age Ageing
.
2021
;
50
(
4
):
1371
81
.
16.
Bunn
F
,
Goodman
C
,
Corazzini
K
,
Sharpe
R
,
Handley
M
,
Lynch
J
, et al
.
Setting priorities to inform assessment of care homes’ readiness to participate in healthcare innovation: a systematic mapping review and consensus process
.
Int J Environ Res Public Health
.
2020
;
17
(
3
):
987
.
17.
Devi
R
,
Martin
GP
,
Banerjee
J
,
Gladman
JR
,
Dening
T
,
Barat
A
, et al
.
Sustaining interventions in care homes initiated by quality improvement projects: a qualitative study
.
BMJ Qual Saf
.
2023
;
32
(
11
):
665
75
.
18.
Bhat
RS
,
Rockwood
K
.
The role of diagnosis in delirium
.
Int Psychogeriatr
.
2016
;
28
(
10
):
1579
86
.
19.
HSE
.
Reducing error and influencing behaviour (guidance booklets)
.
London
;
1999
.
20.
NICE
.
Delirium: prevention, diagnosis and management in hospital and long-term care
.
NICE Guideline
;
2023
. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553009/ (accessed 30th September, 2024).
21.
Tieges
Z
,
Brown
LJE
,
MacLullich
AMJ
.
Objective assessment of attention in delirium: a narrative review
.
Int J Geriatr Psychiatry
.
2014
;
29
(
12
):
1185
97
.
22.
Morandi
A
,
Han
JH
,
Meagher
D
,
Vasilevskis
E
,
Cerejeira
J
,
Hasemann
W
, et al
.
Detecting delirium superimposed on dementia: evaluation of the diagnostic performance of the Richmond agitation and sedation Scale
.
J Am Med Dir Assoc
.
2016
;
17
(
9
):
828
33
.
23.
Gual
N
,
Richardson
SJ
,
Davis
DHJ
,
Bellelli
G
,
Hasemann
W
,
Meagher
D
, et al
.
Impairments in balance and mobility identify delirium in patients with comorbid dementia
.
Int Psychogeriatr
.
2019
;
31
(
5
):
749
53
.
24.
Urfer Dettwiler
P
,
Zúñiga
F
,
Bachnick
S
,
Gehri
B
,
de Jonghe
JFM
,
Hasemann
W
.
Detecting delirium in nursing home residents using the Informant Assessment of Geriatric Delirium (I-AGeD): a validation pilot study
.
Eur Geriatr Med
.
2022
;
13
(
4
):
917
31
.
25.
Kaul
V
,
Enslin
S
,
Gross
SA
.
History of artificial intelligence in medicine
.
Gastrointest Endosc
.
2020
;
92
(
4
):
807
12
.
26.
Gong
KD
,
Lu
R
,
Bergamaschi
TS
,
Sanyal
A
,
Guo
J
,
Kim
HB
, et al
.
Predicting intensive care delirium with machine learning: model development and external validation
.
Anesthesiology
.
2023
;
138
(
3
):
299
311
.
27.
Liu
S
,
Schlesinger
JJ
,
McCoy
AB
,
Reese
TJ
,
Steitz
B
,
Russo
E
, et al
.
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record
.
J Am Med Inform Assoc
.
2022
;
30
(
1
):
120
31
.
28.
Gordon
AL
,
Rand
S
,
Crellin
E
,
Allan
S
,
Tracey
F
,
Corte
KD
, et al
.
Piloting a minimum data set for older people living in care homes in England: a developmental study
.
medRxiv
;
2024
. Available from: <u>https://www.medrxiv.org/content/10.1101/2024.06.07.24308589v1 (accessed 30th September, 2024).
29.
Carroll
RE
,
Smith
N
,
Palmer
SE
,
Burton
JK
,
Gordon
AL
,
Towers
AM
, et al
.
Piloting a Minimum Data Set (MDS) in english care homes: a qualitative study of professional perspectives on implementation and data use
.
Researchsquare
;
2024
. Available from: https://www.researchsquare.com (accessed 30th September, 2024).
30.
Vemou
K
,
Horvath
A
,
Zerdick
T
.
Facial emotion recognition
.
TechDispatch
;
2021
. Available from: https://edps.europa.eu/system/files/2021-05/21-05-26_techdispatch-facial-emotion-recognition_ref_en.pdf (accessed 02 July, 2024).
31.
Sampson
EL
,
West
E
,
Fischer
T
.
Pain and delirium: mechanisms, assessment, and management
.
Eur Geriatr Med
.
2020
;
11
(
1
):
45
52
.
32.
Shrestha
P
,
Fick
DM
.
Recognition of delirium superimposed on dementia: is there an ideal tool
.
Geriatrics
.
2023
;
8
(
1
):
22
.
33.
Gupta
N
,
Gupta
SK
,
Pathak
RK
,
Jain
V
,
Rashidi
P
,
Suri
JS
.
Human activity recognition in artificial intelligence framework: a narrative review
.
Artif Intell Rev
.
2022
;
55
(
6
):
4755
808
.
34.
The history of RFID technology
.
RFID Journal
[cited 2024 Aug 2]. Available from: https://www.rfidjournal.com/expert-views/the-history-of-rfid-technology/76202/ (accessed 30th September, 2024).
35.
Ma
CZH
,
Wong
DWC
,
Lam
WK
,
Wan
AHP
,
Lee
WCC
.
Balance improvement effects of biofeedback systems with state-of-the-art wearable sensors: a systematic review
.
Sensors
.
2016
;
16
(
4
):
434
.
36.
Beddiar
DR
,
Nini
B
,
Sabokrou
M
,
Hadid
A
.
Vision-based human activity recognition: a survey
.
Multimed Tools Appl
.
2020
;
79
(
41–42
):
30509
55
.
37.
Bashan
A
,
Bartsch
RP
,
Kantelhardt
JW
,
Havlin
S
,
Ivanov
PC
.
Network physiology reveals relations between network topology and physiological function
.
Nat Commun
.
2012
;
3
:
702
.
38.
Soto
JCH
,
Galdino
I
,
Caballero
E
,
Ferreira
V
,
Muchaluat-Saade
D
,
Albuquerque
C
.
A survey on vital signs monitoring based on Wi-Fi CSI data
.
Comput Commun
.
2022
;
195
:
99
110
.
39.
Janiesch
C
,
Zschech
P
,
Heinrich
K
.
Machine learning and deep learning
.
Electron Mark
.
2021
;
31
(
3
):
685
95
.
40.
Cai
G
,
Zhang
Q
,
Liu
B
,
Jin
Z
,
Qian
J
.
Deep learning-based recognition and visualization of human motion behavior
.
Acad J Sci Technology
.
2024
;
10
(
1
):
50
5
.
41.
Olivas-Padilla
BE
,
Manitsaris
S
,
Glushkova
A
.
Explainable AI in human motion: a comprehensive approach to analysis, modeling, and generation
.
Pattern Recognit
.
2024
;
151
:
110418
.
42.
Neuhauser
D
,
Provost
L
,
Bergman
B
,
Blanchard
CE
.
The meaning of variation to healthcare managers, clinical and health-services researchers, and individual patients
.
BMJ Qual Saf
.
2011
;
20
(
Suppl l_1
):
i36
40
.
43.
Goldenholz
DM
,
Sun
H
,
Ganglberger
W
,
Westover
MB
.
Sample size analysis for machine learning clinical validation studies
.
Biomedicines
.
2023
;
11
(
3
):
685
.
44.
Emilsson
M
,
Karlsson
C
,
Svensson
A
.
Experiences of using surveillance cameras as a monitoring solution at nursing homes: the eldercare personnel’s perspectives
.
BMC Health Serv Res
.
2023
;
23
(
1
):
144
13
.
45.
Feehan
M
,
Owen
LA
,
McKinnon
IM
,
Deangelis
MM
.
Artificial intelligence, heuristic biases, and the optimization of health outcomes: cautionary optimism
.
J Clin Med
.
2021
;
10
(
22
):
5284
.
46.
Thompson
C
,
Gordon
A
,
Khaliq
K
,
Daffu-O’Reilly
A
,
Willis
T
,
Noakes
C
, et al
.
Quality in care homes: how wearable devices and social network analysis might help
.
PLoS One
.
2024
;
19
(
5
):
e0302478
.
You do not currently have access to this content.