Introduction: It is uncertain whether folic acid (FA) combined with docosahexaenoic acid (DHA) could improve cognitive performance. This study evaluated the effects of a 12-month FA and DHA supplementation, in combination or alone, on cognitive function, DNA oxidative damage, and mitochondrial function in participants with mild cognitive impairment (MCI). Methods: This randomized, double-blind, placebo-controlled trial recruited MCI participants aged 60 years and older. Two hundred and eighty participants were randomly divided in equal proportion into four groups: FA + DHA (FA 800 μg/d + DHA 800 mg/d), FA (800 μg/d), DHA (800 mg/d), and placebo groups daily orally for 12 months. The primary outcome was cognitive function evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-RC). Cognitive tests and blood mechanism-related biomarkers were determined at baseline and 12 months. Results: During the 12-month follow-up, scores of full intelligence quotient (βDHA: 1.302, 95% CI: 0.615, 1.990, p < 0.001; βFA: 1.992, 95% CI: 1.304, 2.679, p < 0.001; βFA+DHA: 2.777, 95% CI: 2.090, 3.465, p < 0.001), verbal intelligence quotient, and some subtests of the WAIS-RC were significantly improved in FA + DHA and single intervention groups compared to the placebo group. Moreover, the FA and DHA intervention combination was superior to either intervention alone (p < 0.001). Meanwhile, FA, DHA, and their combined use significantly decreased 8-OHdG level and increased mitochondrial DNA copy number compared to the placebo (p < 0.05). Conclusions: Supplementation of FA and DHA, alone or combined, for 12 months can improve cognitive function in MCI participants, possibly through mitigating DNA oxidative damage and enhancing mitochondrial function. Combined supplementation may provide more cognitive benefit than supplementation alone.

1.
Anderson
ND
.
State of the science on mild cognitive impairment (MCI)
.
CNS Spectr
.
2019
;
24
(
1
):
78
87
.
2.
Cummings
JL
,
Morstorf
T
,
Zhong
K
.
Alzheimer’s disease drug-development pipeline: few candidates, frequent failures
.
Alzheimers Res Ther
.
2014
;
6
(
4
):
37
.
3.
Schneider
LS
,
Mangialasche
F
,
Andreasen
N
,
Feldman
H
,
Giacobini
E
,
Jones
R
, et al
.
Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014
.
J Intern Med
.
2014
;
275
(
3
):
251
83
.
4.
Sanford
AM
.
Mild cognitive impairment
.
Clin Geriatr Med
.
2017
;
33
(
3
):
325
37
.
5.
Jia
L
,
Du
Y
,
Chu
L
,
Zhang
Z
,
Li
F
,
Lyu
D
, et al
.
Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study
.
Lancet Public Health
.
2020
;
5
(
12
):
e661
71
.
6.
Boumenna
T
,
Scott
TM
,
Lee
JS
,
Palacios
N
,
Tucker
KL
.
Folate, vitamin B-12, and cognitive function in the Boston Puerto Rican Health Study
.
Am J Clin Nutr
.
2021
;
113
(
1
):
179
86
.
7.
Chen
H
,
Liu
S
,
Ji
L
,
Wu
T
,
Ji
Y
,
Zhou
Y
, et al
.
Folic acid supplementation mitigates alzheimer’s disease by reducing inflammation: a randomized controlled trial
.
Mediators Inflamm
.
2016
;
2016
:
5912146
.
8.
Wang
Z
,
Zhu
W
,
Xing
Y
,
Jia
J
,
Tang
Y
.
B vitamins and prevention of cognitive decline and incident dementia: a systematic review and meta-analysis
.
Nutr Rev
.
2022
;
80
(
4
):
931
49
.
9.
Weiser
MJ
,
Butt
CM
,
Mohajeri
MH
.
Docosahexaenoic acid and cognition throughout the lifespan
.
Nutrients
.
2016
;
8
(
2
):
99
.
10.
Ma
F
,
Li
Q
,
Zhou
X
,
Zhao
J
,
Song
A
,
Li
W
, et al
.
Effects of folic acid supplementation on cognitive function and Aβ-related biomarkers in mild cognitive impairment: a randomized controlled trial
.
Eur J Nutr
.
2019
;
58
(
1
):
345
56
.
11.
Sala-Vila
A
,
Arenaza-Urquijo
EM
,
Sánchez-Benavides
G
,
Suárez-Calvet
M
,
Milà-Alomà
M
,
Grau-Rivera
O
, et al
.
DHA intake relates to better cerebrovascular and neurodegeneration neuroimaging phenotypes in middle-aged adults at increased genetic risk of Alzheimer disease
.
Am J Clin Nutr
.
2021
;
113
(
6
):
1627
35
.
12.
Dawson
SL
,
Bowe
SJ
,
Crowe
TC
.
A combination of omega-3 fatty acids, folic acid and B-group vitamins is superior at lowering homocysteine than omega-3 alone: a meta-analysis
.
Nutr Res
.
2016
;
36
(
6
):
499
508
.
13.
Umhau
JC
,
Dauphinais
KM
,
Patel
SH
,
Nahrwold
DA
,
Hibbeln
JR
,
Rawlings
RR
, et al
.
The relationship between folate and docosahexaenoic acid in men
.
Eur J Clin Nutr
.
2006
;
60
(
3
):
352
7
.
14.
Khot
V
,
Kale
A
,
Joshi
A
,
Chavan-Gautam
P
,
Joshi
S
.
Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids
.
BioMed Res Int
.
2014
;
2014
:
613078
.
15.
Kalecký
K
,
Ashcraft
P
,
Bottiglieri
T
.
One-carbon metabolism in alzheimer’s disease and Parkinson’s disease brain tissue
.
Nutrients
.
2022
;
14
(
3
):
599
.
16.
Wang
X
,
Zhou
Y
,
Gao
Q
,
Ping
D
,
Wang
Y
,
Wu
W
, et al
.
The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases
.
Oxid Med Cell Longev
.
2020
;
2020
:
3232869
.
17.
Nunomura
A
,
Perry
G
,
Aliev
G
,
Hirai
K
,
Takeda
A
,
Balraj
EK
, et al
.
Oxidative damage is the earliest event in Alzheimer disease
.
J Neuropathol Exp Neurol
.
2001
;
60
(
8
):
759
67
.
18.
Wu
D
,
Liu
B
,
Yin
J
,
Xu
T
,
Zhao
S
,
Xu
Q
, et al
.
Detection of 8-hydroxydeoxyguanosine (8-OHdG) as a biomarker of oxidative damage in peripheral leukocyte DNA by UHPLC-MS/MS
.
J Chromatogr B Analyt Technol Biomed Life Sci
.
2017
;
1064
:
1
6
.
19.
Wang
X
,
Wang
W
,
Li
L
,
Perry
G
,
Lee
HG
,
Zhu
X
.
Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease
.
Biochim Biophys Acta
.
2014
;
1842
(
8
):
1240
7
.
20.
Cunnane
SC
,
Trushina
E
,
Morland
C
,
Prigione
A
,
Casadesus
G
,
Andrews
ZB
, et al
.
Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing
.
Nat Rev Drug Discov
.
2020
;
19
(
9
):
609
33
.
21.
Wang
W
,
Zhao
F
,
Ma
X
,
Perry
G
,
Zhu
X
.
Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances
.
Mol Neurodegener
.
2020
;
15
(
1
):
30
.
22.
Ormazabal
A
,
Casado
M
,
Molero-Luis
M
,
Montoya
J
,
Rahman
S
,
Aylett
SB
, et al
.
Can folic acid have a role in mitochondrial disorders
.
Drug Discov Today
.
2015
;
20
(
11
):
1349
54
.
23.
Garcez
ML
,
Cassoma
RCS
,
Mina
F
,
Bellettini-Santos
T
,
da Luz
AP
,
Schiavo
GL
, et al
.
Folic acid prevents habituation memory impairment and oxidative stress in an aging model induced by D-galactose
.
Metab Brain Dis
.
2021
;
36
(
2
):
213
24
.
24.
Habicht
I
,
Mohsen
G
,
Eichhorn
L
,
Frede
S
,
Weisheit
C
,
Hilbert
T
, et al
.
DHA supplementation attenuates MI-induced LV matrix remodeling and dysfunction in mice
.
Oxid Med Cell Longev
.
2020
;
2020
:
7606938
.
25.
Petersen
RC
.
Mild cognitive impairment as a diagnostic entity
.
J Intern Med
.
2004
;
256
(
3
):
183
94
.
26.
Katzman
R
,
Zhang
MY
,
Ya-Qu
O
,
Wang
ZY
,
Liu
WT
,
Yu
E
, et al
.
A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey
.
J Clin Epidemiol
.
1988
;
41
(
10
):
971
8
.
27.
Perneczky
R
,
Pohl
C
,
Sorg
C
,
Hartmann
J
,
Komossa
K
,
Alexopoulos
P
, et al
.
Complex activities of daily living in mild cognitive impairment: conceptual and diagnostic issues
.
Age Ageing
.
2006
;
35
(
3
):
240
5
.
28.
Gong
YX
.
Revision of Wechsler’s adult intelligence scale in China
.
Acta Psychol Sin
.
1983
;
15
(
3
):
121
9
.
29.
Gong
YX
,
Dai
XY
.
The usage of the Chinese version of the wechsler adult intelligence scale (WAIS-RC)-short form
.
J Hunan Med Univ
.
1984
;
9
:
393
400
.
30.
Izawa
Y
,
Urakami
K
,
Kojima
T
,
Ohama
E
.
Wechsler adult intelligent scase, 3rd edition (WAIS-III): usefulness in the early detection of Alzheimer’s disease
.
Yonago Acta Med
.
2009
;
52
:
11
20
.
31.
Wu
X
,
Wang
H
,
Chen
C
,
Xiong
Y
,
Zhu
L
,
Jia
J
, et al
.
The association between cardiovascular risk burden and cognitive function amongst the old: a 9-year longitudinal cohort study
.
Eur J Neurol
.
2021
;
28
(
9
):
2907
12
.
32.
Kan
W
,
Wang
R
,
Yang
K
,
Liu
H
,
Zou
Y
,
Liu
Y
, et al
.
Effect of hormone levels and aging on cognitive function of patients with pituitary adenomas prior to medical treatment
.
World Neurosurg
.
2019
;
128
:
e252
60
.
33.
Scott
TM
,
Morlett Paredes
A
,
Taylor
MJ
,
Umlauf
A
,
Artiola
IFL
,
Heaton
RK
, et al
.
Demographically-adjusted norms for the WAIS-R block design and arithmetic subtests: results from the neuropsychological norms for the US-Mexico border region in Spanish (NP-NUMBRS) project
.
Clin Neuropsychol
.
2021
;
35
(
2
):
419
32
.
34.
Hale
AC
,
Tolle
KA
,
Kitchen Andren
KA
,
Spencer
RJ
.
Cross-validation of incidental learning tasks from the WAIS-IV as a measure of memory
.
Appl Neuropsychol Adult
.
2020
;
27
(
6
):
517
24
.
35.
Fu
J
,
Liu
Q
,
Zhu
Y
,
Sun
C
,
Duan
H
,
Huang
L
, et al
.
Circulating folate concentrations and the risk of mild cognitive impairment: a prospective study on the older Chinese population without folic acid fortification
.
Eur J Neurol
.
2022
;
29
(
10
):
2913
24
.
36.
van Soest
APM
,
van de Rest
O
,
Witkamp
RF
,
de Groot
L
.
Positive effects of folic acid supplementation on cognitive aging are dependent on ω-3 fatty acid status: a post hoc analysis of the FACIT trial
.
Am J Clin Nutr
.
2021
;
113
(
4
):
801
9
.
37.
Oulhaj
A
,
Jernerén
F
,
Refsum
H
,
Smith
AD
,
de Jager
CA
.
Omega-3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment
.
J Alzheimers Dis
.
2016
;
50
(
2
):
547
57
.
38.
Smith
AD
,
Jernerén
F
,
Refsum
H
.
ω-3 fatty acids and their interactions
.
Am J Clin Nutr
.
2021
;
113
(
4
):
775
8
.
39.
Fairbairn
P
,
Dyall
SC
,
Tsofliou
F
.
The effects of multi-nutrient formulas containing a combination of n-3 PUFA and B vitamins on cognition in the older adult: a systematic review and meta-analysis
.
Br J Nutr
.
2023
;
129
(
3
):
428
41
.
40.
Lv
X
,
Zhou
D
,
Ge
B
,
Chen
H
,
Du
Y
,
Liu
S
, et al
.
Association of folate metabolites and mitochondrial function in peripheral blood cells in alzheimer’s disease: a matched case-control study
.
J Alzheimers Dis
.
2019
;
70
(
4
):
1133
42
.
41.
Kuwahara
K
,
Nanri
A
,
Pham
NM
,
Kurotani
K
,
Kume
A
,
Sato
M
, et al
.
Serum vitamin B6, folate, and homocysteine concentrations and oxidative DNA damage in Japanese men and women
.
Nutrition
.
2013
;
29
(
10
):
1219
23
.
42.
Liu
R
,
Chen
L
,
Wang
Y
,
Zhang
G
,
Cheng
Y
,
Feng
Z
, et al
.
High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice
.
J Nutr Biochem
.
2020
;
79
:
108330
.
43.
Kaliszewska
A
,
Allison
J
,
Martini
M
,
Arias
N
.
Improving age-related cognitive decline through dietary interventions targeting mitochondrial dysfunction
.
Int J Mol Sci
.
2021
;
22
(
7
):
3574
.
44.
Netto
MB
,
de Oliveira Junior
AN
,
Goldim
M
,
Mathias
K
,
Fileti
ME
,
da Rosa
N
, et al
.
Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats
.
Brain Behav Immun
.
2018
;
73
:
661
9
.
45.
Ma
F
,
Wu
T
,
Zhao
J
,
Song
A
,
Liu
H
,
Xu
W
, et al
.
Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI
.
Sci Rep
.
2016
;
6
:
37486
.
46.
Jernerén
F
,
Elshorbagy
AK
,
Oulhaj
A
,
Smith
SM
,
Refsum
H
,
Smith
AD
.
Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial
.
Am J Clin Nutr
.
2015
;
102
(
1
):
215
21
.
You do not currently have access to this content.