Introduction: The association between specific motor capacity variables obtained in a laboratory and parameters of daily-life mobility performance (MP) obtained via wearables is still unclear. The Timed Up-and-Go (TUG) test is a widely used motor capacity tests available either as traditional hand-stopped TUG or as instrumented TUG (iTUG), providing specific information about its subphases. This study aimed to: (1) estimate the association between the TUG and specific parameters reflecting average and maximum daily-life MP, (2) estimate the benefits of the iTUG in terms of explaining MP in daily life compared to the TUG. Methods: The present study was a cross-sectional analysis using baseline data of 294 older persons (mean age: 76.7 ± 5.3 years). Univariate linear regression analysis was performed to delineate the coefficient of determination between TUG time and participants’ MP. MP variables containing mean cadence (MCA) to represent average performance and the 95th percentile of mean cadence of walks with more than three steps (p95>3stepsMCA) to represent maximum performance. To determine whether the iTUG variables give more information about MP, a stepwise multivariate regression analysis between iTUG variables and the p95>3stepsMCA variable to represent maximum performance was conducted. Results: The univariate regression models revealed associations of the TUG with MCA (adjusted R2 = 0.078, p < 0.001) and p95>3stepsMCA (adjusted R2 = 0.199, p < 0.001). The multivariate stepwise regression models revealed a total explanation of maximum daily-life MP (p95>3stepsMCA) of the TUG (adjusted R2 = 0.199, p < 0.001) versus iTUG (adjusted R2 = 0.278, p < 0.010). Discussion/Conclusion: This study shows that the TUG better reflects maximum daily-life MP than average daily-life MP. Moreover, we demonstrate the added value of the iTUG for a more accurate estimation of daily MP compared to the traditional TUG. The iTUG is recommended to estimate maximum daily-life MP in fall-prone older adults. The study is a step toward a specific assessment paradigm using capacity variables from the iTUG to estimate maximum daily-life MP.

1.
Lamb
SE
,
Keene
DJ
.
Measuring physical capacity and performance in older people
.
Best Pract Res Clin Rheumatol
.
2017
;
31
(
2
):
243
54
.
2.
Organization
WH
International classification of functioning disability and Health (ICF)
Geneva
World Health Organization
.
2001
.
3.
Jansen
C-P
,
Toosizadeh
N
,
Mohler
MJ
,
Najafi
B
,
Wendel
C
,
Schwenk
M
.
The association between motor capacity and mobility performance: frailty as a moderator
.
Eur Rev Aging Phys Act
.
2019
;
16
:
16
.
4.
Gordt
K
,
Paraschiv-Ionescu
A
,
Mikolaizak
AS
,
Taraldsen
K
,
Mellone
S
,
Bergquist
R
et al
.
The association of basic and challenging motor capacity with mobility performance and falls in young seniors
.
Arch Gerontol Geriatr
.
2020
;
90
:
104134
.
5.
Giannouli
E
,
Bock
O
,
Mellone
S
,
Zijlstra
W
.
Mobility in old age: capacity is not performance
.
BioMed Res Int
.
2016
;
2016
:
3261567
.
6.
Callisaya
ML
,
Verghese
J
.
The association of clinic-based mobility tasks and measures of community performance and risk
.
Pharm Manag PM R
.
2018
;
10
(
7
):
704
11.e1
.
7.
Zijlstra
W
,
Giannouli
E
.
Mobility in community-dwelling older adults; what are its determinants
.
BMC Geriatr
.
2021
;
21
(
1
):
228
.
8.
Wright
E
,
Chester
V
,
Kuruganti
U
.
Identifying the optimal parameters to express the capacity-activity interrelationship of community-dwelling older adults using wearable sensors
.
Sensors
.
2022
;
22
(
24
):
9648
.
9.
van Ancum
JM
,
van Schooten
KS
,
Jonkman
NH
,
Huijben
B
,
van Lummel
RC
,
Meskers
CGM
et al
.
Gait speed assessed by a 4-m walk test is not representative of daily-life gait speed in community-dwelling adults
.
Maturitas
.
2019
;
121
:
28
34
.
10.
Berthelot
J-M
,
Le Goff
B
,
Maugars
Y
.
The Hawthorne effect: stronger than the placebo effect
.
Joint Bone Spine
.
2011
;
78
(
4
):
335
6
.
11.
Rojer
AGM
,
Coni
A
,
Mellone
S
,
Van Ancum
JM
,
Vereijken
B
,
Helbostad
JL
et al
.
Robustness of in-laboratory and daily-life gait speed measures over one year in high functioning 61- to 70-year-old adults
.
Gerontology
.
2021
;
67
(
6
):
650
9
.
12.
Hillel
I
,
Gazit
E
,
Nieuwboer
A
,
Avanzino
L
,
Rochester
L
,
Cereatti
A
et al
.
Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring
.
Eur Rev Aging Phys Act
.
2019
;
16
:
6
.
13.
Bergquist
R
,
Weber
M
,
Schwenk
M
,
Ulseth
S
,
Helbostad
JL
,
Vereijken
B
et al
.
Performance-based clinical tests of balance and muscle strength used in young seniors: a systematic literature review
.
BMC Geriatr
.
2019
;
19
(
1
):
9
.
14.
Caronni
A
,
Picardi
M
,
Aristidou
E
,
Antoniotti
P
,
Pintavalle
G
,
Redaelli
V
et al
.
How do patients improve their timed up and go test? Responsiveness to rehabilitation of the TUG test in elderly neurological patients
.
Gait Posture
.
2019
;
70
:
33
8
.
15.
Schoene
D
,
Wu
SM-S
,
Mikolaizak
AS
,
Menant
JC
,
Smith
ST
,
Delbaere
K
et al
.
Discriminative ability and predictive validity of the timed up and go test in identifying older people who fall: systematic review and meta-analysis
.
J Am Geriatr Soc
.
2013
;
61
(
2
):
202
8
.
16.
Balash
Y
,
Peretz
C
,
Leibovich
G
,
Herman
T
,
Hausdorff
JM
,
Giladi
N
.
Falls in outpatients with Parkinson’s disease: frequency, impact and identifying factors
.
J Neurol
.
2005
;
252
(
11
):
1310
5
.
17.
Podsiadlo
D
,
Richardson
S
.
The timed “Up & Go”: a test of basic functional mobility for frail elderly persons
.
J Am Geriatr Soc
.
1991
;
39
(
2
):
142
8
.
18.
Christopher
A
,
Kraft
E
,
Olenick
H
,
Kiesling
R
,
Doty
A
.
The reliability and validity of the Timed up and Go as a clinical tool in individuals with and without disabilities across a lifespan: a systematic review
.
Disabil Rehabil
.
2021
;
43
(
13
):
1799
813
.
19.
Salarian
A
,
Horak
FB
,
Zampieri
C
,
Carlson-Kuhta
P
,
Nutt
JG
,
Aminian
K
.
iTUG, a sensitive and reliable measure of mobility
.
IEEE Trans Neural Syst Rehabil Eng
.
2010
;
18
(
3
):
303
10
.
20.
Horak
F
,
King
L
,
Mancini
M
.
Role of body-worn movement monitor technology for balance and gait rehabilitation
.
Phys Ther
.
2015
;
95
(
3
):
461
70
.
21.
Buckley
C
,
Alcock
L
,
McArdle
R
,
Rehman
RZU
,
Del Din
S
,
Mazzà
C
et al
.
The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: insights from gait and postural control
.
Brain Sci
.
2019
;
9
(
2
):
34
.
22.
Park
H
,
Shin
S
,
Youm
C
,
Cheon
S-M
,
Lee
M
,
Noh
B
.
Classification of Parkinson’s disease with freezing of gait based on 360° turning analysis using 36 kinematic features
.
J NeuroEng Rehabil
.
2021
;
18
(
1
):
177
.
23.
Park
H
,
Youm
C
,
Lee
M
,
Noh
B
,
Cheon
S-M
.
Turning characteristics of the more-affected side in Parkinson's disease patients with freezing of gait
.
Sensors
.
2020
;
20
(
11
):
3098
.
24.
Mellone
S
,
Tacconi
C
,
Chiari
L
.
Validity of a smartphone-based instrumented timed up and go
.
Gait Posture
.
2012
;
36
(
1
):
163
5
.
25.
Bergquist
R
,
Nerz
C
,
Taraldsen
K
,
Mellone
S
,
Ihlen
EAF
,
Vereijken
B
et al
.
Predicting advanced balance ability and mobility with an instrumented timed up and go test
.
Sensors
.
2020
;
20
(
17
):
4987
.
26.
Coni
A
,
Ancum
JMV
,
Bergquist
R
,
Mikolaizak
AS
,
Mellone
S
,
Chiari
L
et al
.
Comparison of standard clinical and instrumented physical performance tests in discriminating functional status of high-functioning people aged 61⁻70 Years old
.
Sensors
.
2019
;
19
(
3
):
449
.
27.
Coni
A
,
Mellone
S
,
Colpo
M
,
Bandinelli
S
,
Chiari
L
.
A Factor Analysis model of the instrumented Timed up and Go test for physical capability assessment
.
Gait Posture
.
2018
66
S11
2
.
28.
Jansen
C-P
,
Nerz
C
,
Kramer
F
,
Labudek
S
,
Klenk
J
,
Dams
J
et al
.
Comparison of a group-delivered and individually delivered lifestyle-integrated functional exercise (LiFE) program in older persons: a randomized noninferiority trial
.
BMC Geriatr
.
2018
;
18
(
1
):
267
.
29.
Nasreddine
ZS
,
Phillips
NA
,
Bédirian
V
,
Charbonneau
S
,
Whitehead
V
,
Collin
I
et al
.
The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment
.
J Am Geriatr Soc
.
2005
;
53
(
4
):
695
9
.
30.
Lamb
SE
,
Jørstad-Stein
EC
,
Hauer
K
,
Becker
C
Prevention of Falls Network Europe and Outcomes Consensus Group
.
Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus
.
J Am Geriatr Soc
.
2005
;
53
(
9
):
1618
22
.
31.
Jette
AM
,
Haley
SM
,
Coster
WJ
,
Kooyoomjian
JT
,
Levenson
S
,
Heeren
T
et al
.
Late life function and disability instrument: I. Development and evaluation of the disability component
.
J Gerontol A Biol Sci Med Sci
.
2002
57
4
M209
16
.
32.
Kempen
GIJM
,
Todd
CJ
,
van Haastregt
JCM
,
Zijlstra
GAR
,
Beyer
N
,
Freiberger
E
et al
.
Cross-cultural validation of the Falls Efficacy Scale International (FES-I) in older people: results from Germany, The Netherlands and the UK were satisfactory
.
Disabil Rehabil
.
2007
;
29
(
2
):
155
62
.
33.
Talley
KMC
,
Wyman
JF
,
Gross
CR
.
Psychometric properties of the activities-specific balance confidence scale and the survey of activities and fear of falling in older women
.
J Am Geriatr Soc
.
2008
;
56
(
2
):
328
33
.
34.
Mellone
S
,
Tacconi
C
,
Schwickert
L
,
Klenk
J
,
Becker
C
,
Chiari
L
.
Smartphone-based solutions for fall detection and prevention: the FARSEEING approach
.
Z Gerontol Geriatr
.
2012
;
45
(
8
):
722
7
.
35.
El-Gohary
M
,
Pearson
S
,
McNames
J
,
Mancini
M
,
Horak
F
,
Mellone
S
et al
.
Continuous monitoring of turning in patients with movement disability
.
Sensors
.
2013
;
14
(
1
):
356
69
.
36.
Taraldsen
K
,
Askim
T
,
Sletvold
O
,
Einarsen
EK
,
Bjåstad
KG
,
Indredavik
B
et al
.
Evaluation of a body-worn sensor system to measure physical activity in older people with impaired function
.
Phys Ther
.
2011
;
91
(
2
):
277
85
.
37.
Taraldsen
K
,
Chastin
SFM
,
Riphagen
II
,
Vereijken
B
,
Helbostad
JL
.
Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications
.
Maturitas
.
2012
;
71
(
1
):
13
9
.
38.
Rapp
K
,
Mikolaizak
S
,
Rothenbacher
D
,
Denkinger
MD
,
Klenk
J
.
Prospective analysis of time out-of-home and objectively measured walking duration during a week in a large cohort of older adults
.
Eur Rev Aging Phys Act
.
2018
;
15
:
8
.
39.
Rapp
K
,
Klenk
J
,
Benzinger
P
,
Franke
S
,
Denkinger
MD
,
Peter
R
et al
.
Physical performance and daily walking duration: associations in 1,271 women and men aged 65–90 years
.
Aging Clin Exp Res
.
2012
;
24
(
5
):
455
60
.
40.
Klenk
J
,
Dallmeier
D
,
Denkinger
MD
,
Rapp
K
,
Koenig
W
,
Rothenbacher
D
et al
.
Objectively measured walking duration and sedentary behaviour and four-year mortality in older people
.
PLoS One
.
2016
;
11
(
4
):
e0153779
.
41.
Tudor-Locke
C
,
Mora-Gonzalez
J
,
Ducharme
SW
,
Aguiar
EJ
,
Schuna
JM
Jr
,
Barreira
TV
et al
.
Walking cadence (steps/min) and intensity in 61-85-year-old adults: the CADENCE-Adults study
.
Int J Behav Nutr Phys Act
.
2021
;
18
(
1
):
129
.
42.
Abel
M
,
Hannon
J
,
Mullineaux
D
,
Beighle
A
.
Determination of step rate thresholds corresponding to physical activity intensity classifications in adults
.
J Phys Act Health
.
2011
;
8
(
1
):
45
51
.
43.
Tudor-Locke
C
,
Burkett
L
,
Reis
JP
,
Ainsworth
BE
,
Macera
CA
,
Wilson
DK
.
How many days of pedometer monitoring predict weekly physical activity in adults
.
Prev Med
.
2005
;
40
(
3
):
293
8
.
44.
Rowe
DA
,
Welk
GJ
,
Heil
DP
,
Mahar
MT
,
Kemble
CD
,
Calabró
MA
et al
.
Stride rate recommendations for moderate-intensity walking
.
Med Sci Sports Exerc
.
2011
;
43
(
2
):
312
8
.
45.
O’Brien
MW
,
Kivell
MJ
,
Wojcik
WR
,
d'Entremont
G
,
Kimmerly
DS
,
Fowles
JR
.
Step rate thresholds associated with moderate and vigorous physical activity in adults
.
Int J Environ Res Public Health
.
2018
;
15
(
11
):
2454
.
46.
Tabachnick
BG
,
Fidell
LS
Using multivariate statistics
7th ed
New York, NY
Pearson
.
2019
.
47.
Rispens
SM
,
van Schooten
KS
,
Pijnappels
M
,
Daffertshofer
A
,
Beek
PJ
,
van Dieën
JH
.
Do extreme values of daily-life gait characteristics provide more information about fall risk than median values
.
JMIR Res Protoc
.
2015
;
4
(
1
):
e4
.
48.
Schreiber
M
,
Schneider
R
.
Cognitive plasticity in people at risk for dementia: optimising the testing-the-limits-approach
.
Aging Ment Health
.
2007
;
11
(
1
):
75
81
.
You do not currently have access to this content.