Introduction: The discovery of longevity molecules that delay aging and prolong lifespan has always been a dream of humanity. Sitagliptin phosphate (SIT), an oral dipeptidyl peptidase-4 (DPP-4) inhibitor, is an oral drug commonly used in the treatment of type 2 diabetes (T2D). In addition to being antidiabetic, previous studies have reported that SIT has shown potential to improve health. However, whether SIT plays a role in the amelioration of aging and the underlying molecular mechanism remain undetermined. Methods:Caenorhabditis elegans (C. elegans) was used as a model of aging. Lifespan assays were performed with adult-stage worms on nematode growth medium plates containing FUdR with or without the specific concentration of SIT. The period of fast body movement, body bending rates, and pharyngeal pumping rates were recorded to assess the healthspan of C. elegans. Gene expression was confirmed by GFP fluorescence signal of transgenic worms and qPCR. In addition, the intracellular reactive oxygen species levels were measured using a free radical sensor H2DCF-DA. Results: We found that SIT significantly extended lifespan and healthspan of C. elegans. Mechanistically, we found that several age-related pathways and genes were involved in SIT-induced lifespan extension. The transcription factors DAF-16/FOXO, SKN-1/NRF2, and HSF-1 played important roles in SIT-induced longevity. Moreover, our findings illustrated that SIT-induced survival benefits by inhibiting the insulin/insulin-like signaling pathway and activating the dietary restriction-related and mitochondrial function-related signaling pathways. Conclusion: Our work may provide a theoretical basis for the development of anti-T2D drugs as antiaging drugs, especially for the treatment of age-related disease in diabetic patients.

1.
Singh
PP
,
Demmitt
BA
,
Nath
RD
,
Brunet
A
.
The genetics of aging: a vertebrate perspective
.
Cell
.
2019
;
177
(
1
):
200
20
.
2.
López-Otín
C
,
Blasco
MA
,
Partridge
L
,
Serrano
M
,
Kroemer
G
.
The hallmarks of aging
.
Cell
.
2013
;
153
(
6
):
1194
217
.
3.
Hansen
M
,
Kennedy
BK
.
Does longer lifespan mean longer healthspan
.
Trends Cell Biol
.
2016
;
26
(
8
):
565
8
.
4.
Katewa
SD
,
Kapahi
P
.
Dietary restriction and aging, 2009
.
Aging Cell
.
2010
;
9
(
2
):
105
12
.
5.
López-Otín
C
,
Galluzzi
L
,
Freije
JMP
,
Madeo
F
,
Kroemer
G
.
Metabolic control of longevity
.
Cell
.
2016
;
166
(
4
):
802
21
.
6.
Finkel
T
.
The metabolic regulation of aging
.
Nat Med
.
2015
;
21
(
12
):
1416
23
.
7.
Baur
JA
,
Pearson
KJ
,
Price
NL
,
Jamieson
HA
,
Lerin
C
,
Kalra
A
.
Resveratrol improves health and survival of mice on a high-calorie diet
.
Nature
.
2006
;
444
(
7117
):
337
42
.
8.
Andreux
PA
,
Blanco-Bose
W
,
Ryu
D
,
Burdet
F
,
Ibberson
M
,
Aebischer
P
.
The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans
.
Nat Metab
.
2019
;
1
(
6
):
595
603
.
9.
Wu
L
,
Zhou
B
,
Oshiro-Rapley
N
,
Li
M
,
Paulo
JA
,
Webster
CM
.
An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer
.
Cell
.
2016
;
167
(
7
):
1705
18.e13
.
10.
Wan
QL
,
Zheng
SQ
,
Wu
GS
,
Luo
HR
.
Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway
.
Exp Gerontol
.
2013
;
48
(
5
):
499
506
.
11.
Gioran
A
,
Piazzesi
A
,
Bertan
F
,
Schroer
J
,
Wischhof
L
,
Nicotera
P
.
Multi-omics identify xanthine as a pro-survival metabolite for nematodes with mitochondrial dysfunction
.
EMBO J
.
2019
;
38
(
6
):
e99558
.
12.
Wan
QL
,
Fu
X
,
Meng
X
,
Luo
Z
,
Dai
W
,
Yang
J
.
Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans
.
Food Funct
.
2020
;
11
(
1
):
347
57
.
13.
Katsyuba
E
,
Mottis
A
,
Zietak
M
,
De Franco
F
,
van der Velpen
V
,
Gariani
K
.
De novo NAD(+) synthesis enhances mitochondrial function and improves health
.
Nature
.
2018
;
563
(
7731
):
354
9
.
14.
Bao
K
,
Liu
W
,
Song
Z
,
Feng
J
,
Mao
Z
,
Bao
L
.
Crotamiton derivative JM03 extends lifespan and improves oxidative and hypertonic stress resistance in Caenorhabditis elegans via inhibiting OSM-9
.
Elife
.
2022
;
11
:
e72410
.
15.
Gallwitz
B
.
Review of sitagliptin phosphate: a novel treatment for type 2 diabetes
.
Vasc Health Risk Manag
.
2007
;
3
(
2
):
203
10
.
16.
El-Agamy
DS
,
Abo-Haded
HM
,
Elkablawy
MA
.
Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats
.
Exp Biol Med
.
2016
;
241
(
14
):
1577
87
.
17.
Omoto
S
,
Taniura
T
,
Nishizawa
T
,
Tamaki
T
,
Shouzu
A
,
Nomura
S
.
Anti-atherosclerotic effects of sitagliptin in patients with type 2 diabetes mellitus
.
Diabetes Metab Syndr Obes
.
2015
;
8
:
339
45
.
18.
Wicinski
M
,
Wódkiewicz
E
,
Slupski
M
,
Walczak
M
,
Socha
M
,
Malinowski
B
.
Neuroprotective activity of sitagliptin via reduction of neuroinflammation beyond the incretin effect: focus on Alzheimer’s disease
.
BioMed Res Int
.
2018
;
2018
:
6091014
.
19.
Jung
YA
,
Choi
YK
,
Jung
GS
,
Seo
HY
,
Kim
HS
,
Jang
BK
.
Sitagliptin attenuates methionine/choline-deficient diet-induced steatohepatitis
.
Diabetes Res Clin Pract
.
2014
;
105
(
1
):
47
57
.
20.
Abo-Haded
HM
,
Elkablawy
MA
,
Al-Johani
Z
,
Al-Ahmadi
O
,
El-Agamy
DS
.
Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity
.
PLoS One
.
2017
;
12
(
3
):
e0174295
.
21.
Chen
J
,
Ou
Y
,
Li
Y
,
Hu
S
,
Shao
LW
,
Liu
Y
.
Metformin extends C. elegans lifespan through lysosomal pathway
.
Elife
.
2017
;
6
:
e31268
.
22.
Jia
W
,
Wang
C
,
Zheng
J
,
Li
Y
,
Yang
C
,
Wan
QL
.
Pioglitazone hydrochloride extends the lifespan of Caenorhabditis elegans by activating DAF-16/FOXO- and SKN-1/NRF2-Related signaling pathways
.
Oxid Med Cell Longev
.
2022
;
2022
:
8496063
.
23.
Shen
Z
,
Hinson
A
,
Miller
RA
,
Garcia
GG
.
Cap-independent translation: a shared mechanism for lifespan extension by rapamycin, acarbose, and 17α-estradiol
.
Aging Cell
.
2021
;
20
(
5
):
e13345
.
24.
Kenyon
CJ
.
The genetics of ageing
.
Nature
.
2010
;
464
(
7288
):
504
12
.
25.
Taylor
RC
.
Aging and the UPR(ER)
.
Brain Res
.
2016
1648
Pt B
588
93
.
26.
Brenner
S
.
The genetics of Caenorhabditis elegans
.
Genetics
.
1974
;
77
(
1
):
71
94
.
27.
Wan
QL
,
Meng
X
,
Dai
W
,
Luo
Z
,
Wang
C
,
Fu
X
.
N(6)-methyldeoxyadenine and histone methylation mediate transgenerational survival advantages induced by hormetic heat stress
.
Sci Adv
.
2021
7
1
eabc3026
.
28.
Wan
QL
,
Fu
XD
,
Dai
WY
,
Yang
J
,
Luo
ZH
,
Meng
X
.
Uric acid induces stress resistance and extends the life span through activating the stress response factor DAF-16/FOXO and SKN-1/NRF2
.
Aging-Us
.
2020
;
12
(
3
):
2840
56
.
29.
Huang
X
,
Wang
C
,
Chen
L
,
Zhang
T
,
Leung
KL
,
Wong
G
.
Human amyloid beta and α-synuclein co-expression in neurons impair behavior and recapitulate features for Lewy body dementia in Caenorhabditis elegans
.
Biochim Biophys Acta Mol Basis Dis
.
2021
;
1867
(
10
):
166203
.
30.
Herndon
LA
,
Schmeissner
PJ
,
Dudaronek
JM
,
Brown
PA
,
Listner
KM
,
Sakano
Y
.
Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans
.
Nature
.
2002
;
419
(
6909
):
808
14
.
31.
Lee
H
,
Cho
JS
,
Lambacher
N
,
Lee
J
,
Lee
SJ
,
Lee
TH
.
The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior
.
J Biol Chem
.
2008
;
283
(
22
):
14988
93
.
32.
Greer
EL
,
Dowlatshahi
D
,
Banko
MR
,
Villen
J
,
Hoang
K
,
Blanchard
D
.
An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans
.
Curr Biol
.
2007
;
17
(
19
):
1646
56
.
33.
Lakowski
B
,
Hekimi
S
.
The genetics of caloric restriction in Caenorhabditis elegans
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
22
):
13091
6
.
34.
Lee
SS
,
Kennedy
S
,
Tolonen
AC
,
Ruvkun
G
.
DAF-16 target genes that control C. elegans life-span and metabolism
.
Science
.
2003
;
300
(
5619
):
644
7
.
35.
Chen
D
,
Li
PW
,
Goldstein
BA
,
Cai
W
,
Thomas
EL
,
Chen
F
.
Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans
.
Cell Rep
.
2013
;
5
(
6
):
1600
10
.
36.
Li
WJ
,
Wang
CW
,
Tao
L
,
Yan
YH
,
Zhang
MJ
,
Liu
ZX
.
Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans
.
Nat Commun
.
2021
;
12
(
1
):
4568
.
37.
Tullet
JM
,
Hertweck
M
,
An
JH
,
Baker
J
,
Hwang
JY
,
Liu
S
.
Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans
.
Cell
.
2008
;
132
(
6
):
1025
38
.
38.
Chiang
WC
,
Ching
TT
,
Lee
HC
,
Mousigian
C
,
Hsu
AL
.
HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity
.
Cell
.
2012
148
1–2
322
34
.
39.
Steinbaugh
MJ
,
Narasimhan
SD
,
Robida-Stubbs
S
,
Moronetti Mazzeo
LE
,
Dreyfuss
JM
,
Hourihan
JM
.
Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence
.
Elife
.
2015
;
4
:
e07836
.
40.
Hsin
H
,
Kenyon
C
.
Signals from the reproductive system regulate the lifespan of C. elegans
.
Nature
.
1999
;
399
(
6734
):
362
6
.
41.
Motola
DL
,
Cummins
CL
,
Rottiers
V
,
Sharma
KK
,
Li
T
,
Li
Y
.
Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans
.
Cell
.
2006
;
124
(
6
):
1209
23
.
42.
Vatner
SF
,
Zhang
J
,
Oydanich
M
,
Berkman
T
,
Naftalovich
R
,
Vatner
DE
.
Healthful aging mediated by inhibition of oxidative stress
.
Ageing Res Rev
.
2020
;
64
:
101194
.
43.
Larsen
PL
,
Clarke
CF
.
Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q
.
Science
.
2002
;
295
(
5552
):
120
3
.
44.
Rea
SL
,
Ventura
N
,
Johnson
TE
.
Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans
.
PLoS Biol
.
2007
;
5
(
10
):
e259
.
45.
Nikooyeh
B
,
Abdollahi
Z
,
Salehi
F
,
Nourisaeidlou
S
,
Hajifaraji
M
,
Zahedirad
M
.
Prevalence of obesity and overweight and its associated factors in urban adults from west Azerbaijan, Iran: the national food and nutritional surveillance program (NFNSP)
.
Nutr Food Sci Res
.
2016
;
3
(
2
):
21
6
.
46.
Viollet
B
,
Guigas
B
,
Sanz Garcia
N
,
Leclerc
J
,
Foretz
M
,
Andreelli
F
.
Cellular and molecular mechanisms of metformin: an overview
.
Clin Sci
.
2012
;
122
(
6
):
253
70
.
47.
Sakamoto
Y
,
Oyama
J
,
Ikeda
H
,
Kuroki
S
,
Gondo
S
,
Iwamoto
T
.
Effects of sitagliptin beyond glycemic control: focus on quality of life
.
Cardiovasc Diabetol
.
2013
;
12
(
1
):
35
.
48.
Wu
C
,
Hu
S
,
Wang
N
,
Tian
J
.
Dipeptidyl peptidase-4 inhibitor sitagliptin prevents high glucose-induced apoptosis via activation of AMP-activated protein kinase in endothelial cells
.
Mol Med Rep
.
2017
;
15
(
6
):
4346
51
.
49.
Al-Damry
NT
,
Attia
HA
,
Al-Rasheed
NM
,
Al-Rasheed
NM
,
Mohamad
RA
,
Al-Amin
MA
.
Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiomyopathy
.
Biomed Pharmacother
.
2018
;
107
:
347
58
.
50.
Sharawy
MH
,
El-Kashef
DH
,
Shaaban
AA
,
El-Agamy
DS
.
Anti-fibrotic activity of sitagliptin against concanavalin A-induced hepatic fibrosis. Role of Nrf2 activation/NF-κB inhibition
.
Int Immunopharmacol
.
2021
;
100
:
108088
.
51.
Yang
W
,
Hekimi
S
.
A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans
.
PLoS Biol
.
2010
;
8
(
12
):
e1000556
.
52.
Chen
Y
,
Onken
B
,
Chen
H
,
Xiao
S
,
Liu
X
,
Driscoll
M
.
Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves
.
J Agric Food Chem
.
2014
;
62
(
15
):
3422
31
.
53.
Kim
EC
,
Kim
JR
.
Senotherapeutics: emerging strategy for healthy aging and age-related disease
.
BMB Rep
.
2019
;
52
(
1
):
47
55
.
54.
Alessio
N
,
Squillaro
T
,
Lettiero
I
,
Galano
G
,
De Rosa
R
,
Peluso
G
.
Biomolecular evaluation of piceatannol’s effects in counteracting the senescence of mesenchymal stromal cells: a new candidate for senotherapeutics
.
Int J Mol Sci
.
2021
;
22
(
21
):
11619
.
55.
Herman
AB
,
Tsitsipatis
D
,
Anerillas
C
,
Mazan-Mamczarz
K
,
Carr
AE
,
Gregg
JM
.
DPP4 inhibition impairs senohemostasis to improve plaque stability in atherosclerotic mice
.
J Clin Invest
.
2023
;
133
(
12
):
e165933
.
56.
Kim
KM
,
Noh
JH
,
Bodogai
M
,
Martindale
JL
,
Yang
X
,
Indig
FE
.
Identification of senescent cell surface targetable protein DPP4
.
Genes Dev
.
2017
;
31
(
15
):
1529
34
.
You do not currently have access to this content.