Introduction: Mild cognitive impairment (MCI) affects obstacle negotiation capabilities, potentially increasing the risk of falls in older adults. However, it is unclear whether smaller brain volumes typically observed in older individuals with MCI are related to the observed hazardous obstacle negotiation in this population. Methods: A total of 93 participants (71.9 ± 5.36 years of age; MCI = 53/control = 40) from the Gait and Brain Study were analyzed. Gray matter (GM) volumes from the frontal, temporal, and parietal lobes were entered in the analysis. Gait performance was recorded using a 6-m electronic walkway during two cognitive load conditions while approaching and stepping over an obstacle: (1) single-task and (2) while counting backwards by 1s from 100 (dual-task). Anticipatory adjustments in gait performance to cross an “ad hoc” obstacle were electronically measured during pre-crossing phases: early (3 steps before the late phase) and late (3 steps before obstacle). Association between the percentage of change in average gait speed and step length from early to late (i.e., anticipatory adjustments) and GM volumes was investigated using multivariate models adjusted for potential confounders. Results: Anticipatory adjustments in gait speed (Wilks’ lambda: 0.35; Eta2: 0.64; p = 0.01) and step length (Wilks’ lambda: 0.33; Eta2: 0.66; p = 0.01) during dual-task conditions were globally associated with GM volumes in MCI. Individuals with MCI with smaller GM volumes in the left inferior frontal gyrus, left hippocampus, right hippocampus, and right entorhinal cortex made significantly fewer anticipatory gait adjustments prior to crossing the obstacle. Conclusion: Frontotemporal atrophy may affect obstacle negotiation capabilities potentially increasing the risk of falls in MCI.

1.
Petersen
RC
.
Clinical practice. Mild cognitive impairment
.
N Engl J Med
.
2011
;
364
(
23
):
2227
34
.
2.
Delbaere
K
,
Kochan
NA
,
Close
JCT
,
Menant
JC
,
Sturnieks
DL
,
Brodaty
H
.
Mild cognitive impairment as a predictor of falls in community-dwelling older people
.
Am J Geriatr Psychiatry
.
2012
;
20
(
10
):
845
53
.
3.
Robinovitch
SN
,
Feldman
F
,
Yang
Y
,
Schonnop
R
,
Leung
PM
,
Sarraf
T
.
Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study
.
Lancet
.
2013
;
381
(
9860
):
47
54
.
4.
Zecevic
AA
,
Salmoni
AW
,
Speechley
M
,
Vandervoort
AA
.
Defining a fall and reasons for falling: comparisons among the views of seniors, health care providers, and the research literature
.
Gerontologist
.
2006
;
46
(
3
):
367
76
.
5.
Weerdesteyn
V
,
Hollands
KL
,
Hollands
MA
.
Gait adaptability
.
Handb Clin Neurol
.
2018
;
159
:
135
46
.
6.
Brown
LA
,
McKenzie
NC
,
Doan
JB
.
Age-dependent differences in the attentional demands of obstacle negotiation
.
Biol Sci Med Sci
.
2005
;
60
(
7
):
924
7
.
7.
Pieruccini-Faria
F
,
Sarquis-Adamson
Y
,
Montero-Odasso
M
.
Mild cognitive impairment affects obstacle negotiation in older adults: results from “gait and brain study”
.
Gerontology
.
2019
;
65
(
2
):
164
73
.
8.
Oschwald
J
,
Guye
S
,
Liem
F
,
Rast
P
,
Willis
S
,
Röcke
C
.
Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change
.
Rev Neurosci
.
2019
;
31
(
1
):
1
57
.
9.
Maguire
EA
,
Burgess
N
,
O’Keefe
J
.
Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates
.
Curr Opin Neurobiol
.
1999
;
9
(
2
):
171
7
.
10.
Hort
J
,
Laczó
J
,
Vyhnálek
M
,
Bojar
M
,
Bureš
J
,
Vlček
K
.
Spatial navigation deficit in amnestic mild cognitive impairment
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
10
):
4042
7
.
11.
DeIpolyi
AR
,
Rankin
KP
,
Mucke
L
,
Miller
BL
,
Gorno-Tempini
ML
.
Spatial cognition and the human navigation network in AD and MCI
.
Neurology
.
2007
;
69
(
10
):
986
97
.
12.
Minkova
L
,
Habich
A
,
Peter
J
,
Kaller
CP
,
Eickhoff
SB
,
Klöppel
S
.
Gray matter asymmetries in aging and neurodegeneration: a review and meta-analysis
.
Hum Brain Mapp
.
2017
;
38
(
12
):
5890
904
.
13.
Ali
P
,
Labriffe
M
,
Paisant
P
,
Custaud
MA
,
Annweiler
C
,
Dinomais
M
.
Associations between gait speed and brain structure in amnestic mild cognitive impairment: a quantitative neuroimaging study
.
Brain Imaging Behav
.
2022
;
16
(
1
):
228
38
.
14.
Beauchet
O
,
Montembeault
M
,
Barden
JM
,
Szturm
T
,
Bherer
L
,
Liu-Ambrose
T
.
Brain gray matter volume associations with gait speed and related structural covariance networks in cognitively healthy individuals and in patients with mild cognitive impairment: a cross-sectional study
.
Exp Gerontol
.
2019
;
122
:
116
22
.
15.
Allali
G
,
Montembeault
M
,
Saj
A
,
Wong
CH
,
Cooper-Brown
LA
,
Bherer
L
.
Structural brain volume covariance associated with gait speed in patients with amnestic and non-amnestic mild cognitive impairment: a double dissociation
.
J Alzheimers Dis
.
2019
71
s1
S29
39
.
16.
Cosentino
E
,
Palmer
K
,
Della Pietà
C
,
Mitolo
M
,
Meneghello
F
,
Levedianos
G
.
Association between gait, cognition, and gray matter volumes in mild cognitive impairment and healthy controls
.
Alzheimer Dis Assoc Disord
.
2020
;
34
(
3
):
231
7
.
17.
Sakurai
R
,
Bartha
R
,
Montero-Odasso
M
.
Entorhinal cortex volume is associated with dual-task gait cost among older adults with MCI: results from the gait and brain study
.
Journals Gerontol Ser A
.
2019
;
74
(
5
):
698
704
.
18.
Haefeli
J
,
Vogeli
S
,
Michel
J
,
Dietz
V
.
Preparation and performance of obstacle steps: interaction between brain and spinal neuronal activity
.
Eur J Neurosci
.
2011
;
33
(
2
):
338
48
.
19.
Drew
T
,
Andujar
JE
,
Lajoie
K
,
Yakovenko
S
.
Cortical mechanisms involved in visuomotor coordination during precision walking
.
Brain Res Rev
.
2008
;
57
(
1
):
199
211
.
20.
Mirelman
A
,
Maidan
I
,
Bernad-Elazari
H
,
Shustack
S
,
Giladi
N
,
Hausdorff
JM
.
Effects of aging on prefrontal brain activation during challenging walking conditions
.
Brain Cogn
.
2017
;
115
:
41
6
.
21.
Marigold
DS
,
Drew
T
.
Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption
.
J Neurophysiol
.
2011
;
105
(
5
):
2457
70
.
22.
Andujar
JE
,
Lajoie
K
,
Drew
T
.
A contribution of area 5 of the posterior parietal cortex to the planning of visually guided locomotion: limb-specific and limb-independent effects
.
J Neurophysiol
.
2010
;
103
(
2
):
986
1006
.
23.
Chatterjee
SA
,
Seidler
RD
,
Skinner
JW
,
Lysne
PE
,
Sumonthee
C
,
Wu
SS
.
Obstacle negotiation in older adults: prefrontal activation interpreted through conceptual models of brain aging
.
Innov Aging
.
2020
4
4
igaa034
.
24.
Chen
M
,
Pillemer
S
,
England
S
,
Izzetoglu
M
,
Mahoney
JR
,
Holtzer
R
.
Neural correlates of obstacle negotiation in older adults: an fNIRS study
.
Gait Posture
.
2017
;
58
:
130
5
.
25.
Maidan
I
,
Shustak
S
,
Sharon
T
,
Bernad-Elazari
H
,
Geffen
N
,
Giladi
N
.
Prefrontal cortex activation during obstacle negotiation: what’s the effect size and timing
.
Brain Cogn
.
2018
;
122
:
45
51
.
26.
Montero-Odasso
MM
,
Sarquis-Adamson
Y
,
Speechley
M
,
Borrie
MJ
,
Hachinski
VC
,
Wells
J
.
Association of dual-task gait with incident dementia in mild cognitive impairment: results from the gait and brain study
.
JAMA Neurol
.
2017
;
74
(
7
):
857
65
.
27.
Montero-Odasso
M
,
Oteng-Amoako
A
,
Speechley
M
,
Gopaul
K
,
Beauchet
O
,
Annweiler
C
.
The motor signature of mild cognitive impairment: results from the gait and brain study
.
J Gerontol A Biol Sci Med Sci
.
2014
;
69
(
11
):
1415
21
.
28.
Ganz
DA
,
Higashi
T
,
Rubenstein
LZ
.
Monitoring falls in cohort studies of community-dwelling older people: effect of the recall interval
.
J Am Geriatr Soc
.
2005
;
53
(
12
):
2190
4
.
29.
Morris
JC
,
Ernesto
C
,
Schafer
K
,
Coats
M
,
Leon
S
,
Sano
M
.
Clinical dementia rating training and reliability in multicenter studies: the Alzheimer’s Disease Cooperative Study experience
.
Neurology
.
1997
;
48
(
6
):
1508
10
.
30.
American Psychiatric Association DSM-IV TR
2000
31.
Reitan
RM
.
The relation of the trail making test to organic brain damage
.
J Consult Psychol
.
1955
;
19
(
5
):
393
4
.
32.
Blackburn
HL
,
Benton
AL
.
Revised administration and scoring of the digit span test
.
J Consult Psychol
.
1957
;
21
(
2
):
139
43
.
33.
Julayanont
P
,
Brousseau
M
,
Chertkow
H
,
Phillips
N
,
Nasreddine
ZS
.
Montreal cognitive assessment memory index score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer’s disease
.
J Am Geriatr Soc
.
2014
;
62
(
4
):
679
84
.
34.
Rosenberg
SJ
,
Ryan
JJ
,
Prifitera
A
.
Rey Auditory-Verbal Learning Test performance of patients with and without memory impairment
.
J Clin Psychol
.
1984
;
40
(
3
):
785
7
.
35.
Goodglass
HWS
The Boston naming test
Philadelphia
Lea Febiger
1983
.
36.
Dubois
B
,
Slachevsky
A
,
Litvan
I
,
Pillon
B
.
The FAB: a frontal assessment battery at bedside
.
Neurology
.
2000
;
55
(
11
):
1621
6
.
37.
Yogev-Seligmann
G
,
Hausdorff
JM
,
Giladi
N
.
The role of executive function and attention in gait
.
Mov Disord
.
2008
;
23
(
3
):
329
42
; quiz 472.
38.
Montero-Odasso
M
,
Muir
SW
,
Speechley
M
.
Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls
.
Arch Phys Med Rehabil
.
2012
;
93
(
2
):
293
9
.
39.
Montero-Odasso
M
,
Casas
A
,
Hansen
KT
,
Bilski
P
,
Gutmanis
I
,
Wells
JL
.
Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study
.
J NeuroEng Rehabil
.
2009
;
6
:
35
.
40.
Chou
LS
,
Kaufman
KR
,
Hahn
ME
,
Brey
RH
.
Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance
.
Gait Posture
.
2003
;
18
(
3
):
125
33
.
41.
Matthis
JS
,
Barton
SL
,
Fajen
BR
.
The critical phase for visual control of human walking over complex terrain
.
Proc Natl Acad Sci U S A
.
2017
114
32
E6720
9
.
42.
Berg
WP
,
Wade
MG
,
Greer
NL
.
Visual regulation of gait in bipedal locomotion: revisiting lee, lishman, and thomson (1982)
.
J Exp Psychol Percept Perform
.
1994
;
20
(
4
):
854
63
.
43.
Lythgo
N
,
Begg
R
,
Best
R
.
Stepping responses made by elderly and young female adults to approach and accommodate known surface height changes
.
Gait Posture
.
2007
;
26
(
1
):
82
9
.
44.
Desikan
RS
,
Ségonne
F
,
Fischl
B
,
Quinn
BT
,
Dickerson
BC
,
Blacker
D
.
An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
.
Neuroimage
.
2006
;
31
(
3
):
968
80
.
45.
Benjamini
Y
,
Hochberg
Y
.
Controlling the false discovery rate: a practical and powerful approach to multiple testing
.
J R Stat Soc Ser B
.
1995
;
57
(
1
):
289
300
.
46.
Rothman
KJ
.
Statistics in nonrandomized studies
.
Epidemiology
.
1990
;
1
(
6
):
417
8
.
47.
Mohagheghi
AA
,
Moraes
R
,
Patla
AE
.
The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion
.
Exp Brain Res
.
2004
;
155
(
4
):
459
68
.
48.
Pieruccini-Faria
F
,
Jones
JA
,
Almeida
QJ
.
Insight into dopamine-dependent planning deficits in Parkinson’s disease: a sharing of cognitive & sensory resources
.
Neuroscience
.
2016
;
318
:
219
29
.
49.
Howard
LR
,
Javadi
AH
,
Yu
Y
,
Mill
RD
,
Morrison
LC
,
Knight
R
.
The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation
.
Curr Biol
.
2014
;
24
(
12
):
1331
40
.
50.
Sakurai
R
,
Kodama
K
,
Ozawa
Y
,
Pieruccini-Faria
F
,
Kobayashi-Cuya
KE
,
Ogawa
S
.
Association of age-related cognitive and obstacle avoidance performances
.
Sci Rep
.
2021
;
11
(
1
):
12552
9
.
51.
Kropff
E
,
Carmichael
JE
,
Moser
MB
,
Moser
EI
.
Speed cells in the medial entorhinal cortex
.
Nature
.
2015
;
523
(
7561
):
419
24
.
52.
Zhang
JX
,
Feng
CM
,
Fox
PT
,
Gao
JH
,
Tan
LH
.
Is left inferior frontal gyrus a general mechanism for selection
.
Neuroimage
.
2004
;
23
(
2
):
596
603
.
53.
Swick
D
,
Ashley
V
,
Turken
AU
.
Left inferior frontal gyrus is critical for response inhibition
.
BMC Neurosci
.
2008
;
9
:
102
.
54.
Sánchez-Cubillo
I
,
Periáñez
JA
,
Adrover-Roig
D
,
Rodríguez-Sánchez
JM
,
Ríos-Lago
M
,
Tirapu
J
.
Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities
.
J Int Neuropsychol Soc
.
2009
;
15
(
3
):
438
50
.
55.
Fitzhugh
KB
,
Fitzhugh
LC
,
Reitan
RM
.
Relation of acuteness of organic brain dysfunction to Trail Making Test performances
.
Percept Mot Skills
.
1962
;
15
:
399
403
.
56.
Billington
J
,
Wilkie
RM
,
Wann
JP
.
Obstacle avoidance and smooth trajectory control: neural areas highlighted during improved locomotor performance
.
Front Behav Neurosci
.
2013
;
7
:
9
.
57.
Pieruccini-Faria
F
,
Montero-Odasso
M
,
Newman
A
.
Obstacle negotiation, gait variability, and risk of falling: results from the “gait and brain study”
.
J Gerontol A Biol Sci Med Sci
.
2019
;
74
(
9
):
1422
8
.
58.
Zhou
J
,
Manor
B
,
Yu
W
,
Lo
OY
,
Gouskova
N
,
Salvador
R
.
Targeted tDCS mitigates dual-task costs to gait and balance in older adults
.
Ann Neurol
.
2021
;
90
(
3
):
428
39
.
59.
Chen
YC
,
That
VT
,
Ugonna
C
,
Liu
Y
,
Nadel
L
,
Chou
YH
.
Diffusion MRI–guided theta burst stimulation enhances memory and functional connectivity along the inferior longitudinal fasciculus in mild cognitive impairment
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
21
):
e2113778119
.
60.
Maidan
I
,
Rosenberg-Katz
K
,
Jacob
Y
,
Giladi
N
,
Deutsch
JE
,
Hausdorff
JM
.
Altered brain activation in complex walking conditions in patients with Parkinson’s disease
.
Park Relat Disord
.
2016
;
25
:
91
6
.
You do not currently have access to this content.