Introduction: Attenuating cardiac fibroblasts activation contributes to reducing excessive extracellular matrix deposition and cardiac structural remodeling in hypertensive hearts. Acacetin plays a protective role in doxorubicin-induced cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to investigate the potential molecular mechanisms underlying the protective role of acacetin on hypertension-induced cardiac fibrosis. Methods: Echocardiography, histopathological methods, and Western blotting techniques were used to evaluate the anti-fibrosis effects in spontaneous hypertensive rat (SHR) which were daily intragastrically administrated with acacetin (10 mg/kg and 20 mg/kg) for 6 weeks. Angiotensin II (Ang II) was used to induce cellular fibrosis in human cardiac fibroblasts (HCFs) in the absence and presence of acacetin treatment for 48 h. Results: Acacetin significantly alleviated hypertension-induced increase in left ventricular (LV) posterior wall thickness and LV mass index in SHR. The expressions of collagen-1, collagen-III, and alpha-smooth muscle actin (α-SMA) were remarkedly decreased after treatment with acacetin (n = 6, p < 0.05). In cultured HCFs, acacetin significantly attenuated Ang II-induced migration and proliferation (n = 6, p < 0.05). Moreover, acacetin substantially inhibited Ang II-induced upregulation of collagen-1 and collagen-III (n = 6, p < 0.05) and downregulated the expression of alpha-SMA in HCFs. Additionally, acacetin decreased the expression of TGF-β1, p-Smad3/Smad3, and p-AKT and p-mTOR but increased the expression of Smad7 (n = 6, p < 0.05). Further studies found that acacetin inhibited TGF-β1 agonist SRI and AKT agonist SC79 caused fibrotic effect. Conclusion: Acacetin inhibits the hypertension-associated cardiac fibrotic processes through regulating TGF-β/Smad3, AKT/mTOR signal transduction pathways.

1.
Shimizu
I
,
Minamino
T
.
Physiological and pathological cardiac hypertrophy
.
J Mol Cell Cardiol
.
2016 Aug
97
245
62
.
2.
Jiang
L
,
Ren
Y
,
Yu
H
,
Guo
YK
,
Liu
X
,
Deng
MY
.
Additive effect of hypertension on left ventricular structure and function in patients with asymptomatic type 2 diabetes mellitus
.
J Hypertens
.
2021 Mar 1
39
3
538
47
.
3.
Messerli
FH
,
Rimoldi
SF
,
Bangalore
S
.
The transition from hypertension to heart failure: contemporary update
.
JACC Heart Fail
.
2017 Aug
5
8
543
51
.
4.
Ma
ZG
,
Yuan
YP
,
Wu
HM
,
Zhang
X
,
Tang
QZ
.
Cardiac fibrosis: new insights into the pathogenesis
.
Int J Biol Sci
.
2018
;
14
(
12
):
1645
57
.
5.
Abarca-Buis
RF
,
Mandujano-Tinoco
EA
,
Cabrera-Wrooman
A
,
Krotzsch
E
.
The complexity of TGFβ/activin signaling in regeneration
.
J Cell Commun Signal
.
2021 Mar
15
1
7
23
.
6.
Li
GR
,
Wang
HB
,
Qin
GW
,
Jin
MW
,
Tang
Q
,
Sun
HY
.
Acacetin, a natural flavone, selectively inhibits human atrial repolarization potassium currents and prevents atrial fibrillation in dogs
.
Circulation
.
2008 May 13
117
19
2449
57
.
7.
Liu
H
,
Yang
L
,
Wu
HJ
,
Chen
KH
,
Lin
F
,
Li
G
.
Water-soluble acacetin prodrug confers significant cardioprotection against ischemia/reperfusion injury
.
Sci Rep
.
2016 Nov 7
6
36435
.
8.
Liu
C
,
Zhang
M
,
Ye
S
,
Hong
C
,
Chen
J
,
Lu
R
.
Acacetin protects myocardial cells against hypoxia-reoxygenation injury through activation of autophagy
.
J Immunol Res
.
2021
;
2021
:
9979843
.
9.
Wu
WY
,
Cui
YK
,
Hong
YX
,
Li
YD
,
Wu
Y
,
Li
G
.
Doxorubicin cardiomyopathy is ameliorated by acacetin via Sirt1-mediated activation of AMPK/Nrf2 signal molecules
.
J Cell Mol Med
.
2020 Oct
24
20
12141
53
.
10.
Wei
Y
,
Yuan
P
,
Zhang
Q
,
Fu
Y
,
Hou
Y
,
Gao
L
.
Acacetin improves endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats by estrogen receptors
.
Mol Biol Rep
.
2020 Sep
47
9
6899
918
.
11.
Zhang
J
,
Luo
D
,
Li
F
,
Li
Z
,
Gao
X
,
Qiao
J
.
Ginsenoside Rg3 alleviates antithyroid cancer drug vandetanib-induced QT interval prolongation
.
Oxid Med Cell Longev
.
2021
;
2021
:
3520034
.
12.
Han
DG
,
Cha
E
,
Joo
J
,
Hwang
JS
,
Kim
S
,
Park
T
.
Investigation of the factors responsible for the poor oral bioavailability of acacetin in rats: physicochemical and biopharmaceutical aspects
.
Pharmaceutics
.
2021 Jan 28
13
2
175
.
13.
Yang
WJ
,
Liu
C
,
Gu
ZY
,
Zhang
XY
,
Cheng
B
,
Mao
Y
.
Protective effects of acacetin isolated from Ziziphora clinopodioides Lam. (Xintahua) on neonatal rat cardiomyocytes
.
Chin Med
.
2014
;
9
(
1
):
28
.
14.
Wu
WY
,
Li
YD
,
Cui
YK
,
Wu
C
,
Hong
YX
,
Li
G
.
The natural flavone acacetin confers cardiomyocyte protection against hypoxia/reoxygenation injury via AMPK-mediated activation of Nrf2 signaling pathway
.
Front Pharmacol
.
2018
;
9
:
497
.
15.
Chang
W
,
Wu
QQ
,
Xiao
Y
,
Jiang
XH
,
Yuan
Y
,
Zeng
XF
.
Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway
.
J Pharmacol Sci
.
2017 Dec
135
4
156
63
.
16.
Han
WM
,
Chen
XC
,
Li
GR
,
Wang
Y
.
Acacetin protects against high glucose-induced endothelial cells injury by preserving mitochondrial function via activating sirt1/sirt3/AMPK signals
.
Front Pharmacol
.
2020
;
11
:
607796
.
17.
Zhou
Y
,
Wu
R
,
Cai
FF
,
Zhou
WJ
,
Lu
YY
,
Zhang
H
.
Development of a novel anti-liver fibrosis formula with luteolin, licochalcone A, aloe-emodin and acacetin by network pharmacology and transcriptomics analysis
.
Pharm Biol
.
2021 Dec
59
1
1594
606
.
18.
Zhang
G
,
Li
Z
,
Dong
J
,
Zhou
W
,
Zhang
Z
,
Que
Z
.
Acacetin inhibits invasion, migration and TGF-β1-induced EMT of gastric cancer cells through the PI3K/Akt/Snail pathway
.
BMC Complement Med Ther
.
2022 Jan 9
22
1
10
.
19.
Koshman
YE
,
Patel
N
,
Chu
M
,
Iyengar
R
,
Kim
T
,
Ersahin
C
.
Regulation of connective tissue growth factor gene expression and fibrosis in human heart failure
.
J Card Fail
.
2013 Apr
19
4
283
94
.
20.
Zile
MR
,
Baicu
CF
,
S Ikonomidis
J
,
Stroud
RE
,
Nietert
PJ
,
Bradshaw
AD
.
Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin
.
Circulation
.
2015 Apr 7
131
14
1247
59
.
21.
Gonzalez
A
,
Schelbert
EB
,
Diez
J
,
Butler
J
.
Myocardial interstitial fibrosis in heart failure: biological and translational perspectives
.
J Am Coll Cardiol
.
2018 Apr 17
71
15
1696
706
.
22.
Kim
GH
,
Uriel
N
,
Burkhoff
D
.
Reverse remodelling and myocardial recovery in heart failure
.
Nat Rev Cardiol
.
2018 Feb
15
2
83
96
.
23.
Chen
T
,
Li
M
,
Fan
X
,
Cheng
J
,
Wang
L
.
Sodium tanshinone IIA sulfonate prevents angiotensin II-induced differentiation of human atrial fibroblasts into myofibroblasts
.
Oxid Med Cell Longev
.
2018
;
2018
:
6712585
.
24.
Maruyama
K
,
Imanaka-Yoshida
K
.
The pathogenesis of cardiac fibrosis: a review of recent progress
.
Int J Mol Sci
.
2022 Feb 27
23
5
2617
.
25.
Huang
CY
,
Nithiyanantham
S
,
Liao
JY
,
Lin
WT
.
Bioactive peptides attenuate cardiac hypertrophy and fibrosis in spontaneously hypertensive rat hearts
.
J Food Drug Anal
.
2020 Jan
28
1
94
102
.
26.
Kong
P
,
Christia
P
,
Frangogiannis
NG
.
The pathogenesis of cardiac fibrosis
.
Cell Mol Life Sci
.
2014 Feb
71
4
549
74
.
27.
Masada
K
,
Miyagawa
S
,
Sakai
Y
,
Harada
A
,
Kanaya
T
,
Sawa
Y
.
Synthetic prostacyclin agonist attenuates pressure-overloaded cardiac fibrosis by inhibiting FMT
.
Mol Ther Methods Clin Dev
.
2020 Dec 11
19
210
9
.
28.
Xiang
S
,
Li
J
,
Zhang
Z
.
miR-26b inhibits isoproterenol-induced cardiac fibrosis via the Keap1/Nrf2 signaling pathway
.
Exp Ther Med
.
2020 Mar
19
3
2067
74
.
29.
Venugopal
H
,
Hanna
A
,
Humeres
C
,
Frangogiannis
NG
.
Properties and functions of fibroblasts and myofibroblasts in myocardial infarction
.
Cells
.
2022 Apr 20
11
9
1386
.
30.
Creemers
EE
,
Pinto
YM
.
Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart
.
Cardiovasc Res
.
2011 Feb 1
89
2
265
72
.
31.
Heger
J
,
Schulz
R
,
Euler
G
.
Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure
.
Br J Pharmacol
.
2016 Jan
173
1
3
14
.
32.
Czubryt
MP
.
Common threads in cardiac fibrosis, infarct scar formation, and wound healing
.
Fibrogenesis Tissue Repair
.
2012 Nov 1
5
1
19
.
33.
Hu
HH
,
Chen
DQ
,
Wang
YN
,
Feng
YL
,
Cao
G
,
Vaziri
ND
.
New insights into TGF-β/Smad signaling in tissue fibrosis
.
Chem Biol Interact
.
2018 Aug 25
292
76
83
.
34.
Walton
KL
,
Johnson
KE
,
Harrison
CA
.
Targeting TGF-beta mediated SMAD signaling for the prevention of fibrosis
.
Front Pharmacol
.
2017
;
8
:
461
.
35.
Chen
L
,
Yang
T
,
Lu
DW
,
Zhao
H
,
Feng
YL
,
Chen
H
.
Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment
.
Biomed Pharmacother
.
2018 May
101
670
81
.
36.
Das
D
,
Holmes
A
,
Murphy
GA
,
Mishra
K
,
Rosenkranz
AC
,
Horowitz
JD
.
TGF-beta1-Induced MAPK activation promotes collagen synthesis, nodule formation, redox stress and cellular senescence in porcine aortic valve interstitial cells
.
J Heart Valve Dis
.
2013 Sep
22
5
621
30
.
37.
Xiang
FL
,
Fang
M
,
Yutzey
KE
.
Loss of beta-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice
.
Nat Commun
.
2017 Sep 28
8
1
712
.
38.
Heallen
T
,
Zhang
M
,
Wang
J
,
Bonilla-Claudio
M
,
Klysik
E
,
Johnson
RL
.
Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size
.
Science
.
2011 Apr 22
332
6028
458
61
.
39.
Heallen
T
,
Morikawa
Y
,
Leach
J
,
Tao
G
,
Willerson
JT
,
Johnson
RL
.
Hippo signaling impedes adult heart regeneration
.
Development
.
2013 Dec
140
23
4683
90
.
40.
Sun
TL
,
Li
WQ
,
Tong
XL
,
Liu
XY
,
Zhou
WH
.
Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway
.
Eur J Pharmacol
.
2021 Jan 15
891
173690
.
You do not currently have access to this content.