Introduction: Cancer and neurodegeneration are two major leading causes of morbidity and death worldwide. Neurodegeneration results in excessive neuronal cell death, and cancer emerges from increased proliferation and resistance to cell death. Although most epidemiological studies support an inverse association between the risk for the development of neurodegenerative diseases and cancer, increasing evidence points to a positive correlation between specific types of cancer, like prostate adenocarcinoma (PRAD), and neurodegenerative diseases, like Parkinson’s disease (PD). Methods: PD and PRAD differential genes were screened through the GEO database, and the differential genes were analyzed using David, String, GEPIA, Kaplan-Meier plotter, TIMER2.0, proteinatlas, cBioPortal, and CTD databases to elucidate the biological function and molecular mechanism of PD and PRAD-related genes. Results: Studies have shown that the hub gene and differentially expressed genes (DEGs) in PD were differentially expressed in PRAD, including CDC20, HSPA4L, ROBO1, DMKN, IFI27L2, LUZP2, PTN, PTGDS. In PRAD, the high expression of HSPA4L, ROBO1, DMKN, IFI27L2, PTN, and PTGDS genes was associated with longer survival, while the patients with low expression of CDC20 and LUZP2 genes had longer survival. The mRNA of CDC20 and LUZP2 were highly expressed, while the mRNAs of HSPA4L, ROBO1, DMKN, IFI27L2, and PTGDS were low expressed. Gene methylation did not affect the survival of patients. The high expression of miR-142, miR-186, miR-30a, miR-497, miR-590, miR-28, and miR-576 in microRNA (miRNA) might potentially be used as biomarkers for the progression of PD and PRAD and for the early diagnosis of PD and PRAD in the populations. The genes in this study were highly associated with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Somatic mutation mainly focused on missense mutation. Therapeutic drugs included acetaminophen and valproic acid (VPA). Conclusion: Bioinformatics was used to identify potential targets and novel molecular mechanisms that may serve as clinical markers for the diagnosis and treatment of PD and PRAD.

1.
Lesage
S
,
Brice
A
.
Parkinson’s disease: from monogenic forms to genetic susceptibility factors
.
Hum Mol Genet
.
2009
18
R1
R48
59
.
2.
Tacik
P
,
Curry
S
,
Fujioka
S
,
Strongosky
A
,
Uitti
RJ
,
van Gerpen
JA
et al
.
Cancer in Parkinson’s disease
.
Parkinsonism Relat Disord
.
2016
;
31
:
28
33
.
3.
Leong
YQ
,
Lee
SWH
,
Ng
KY
.
Cancer risk in Parkinson disease: an updated systematic review and meta-analysis
.
Eur J Neurol
.
2021
;
28
(
12
):
4219
37
.
4.
Chen
C
,
Zheng
H
,
Hu
Z
.
Association between Parkinson’s disease and risk of prostate cancer in different populations: an updated meta-analysis
.
Sci Rep
.
2017
;
7
(
1
):
13449
.
5.
Siegel
RL
,
Miller
KD
,
Jemal
A
.
Cancer statistics, 2020
.
CA Cancer J Clin
.
2020
;
70
(
1
):
7
30
.
6.
Jespersen
CG
,
Nørgaard
M
,
Borre
M
.
Parkinson’s disease and risk of prostate cancer: a Danish population-based case-control study, 1995-2010
.
Cancer Epidemiol
.
2016
;
45
:
157
61
.
7.
Litwin
MS
,
Tan
HJ
.
The diagnosis and treatment of prostate cancer: a review
.
JAMA
.
2017
;
317
(
24
):
2532
42
.
8.
Korhonen
P
,
Kuoppamäki
M
,
Prami
T
,
Hoti
F
,
Christopher
S
,
Ellmen
J
et al
.
Entacapone and prostate cancer risk in patients with Parkinson’s disease
.
Mov Disord
.
2015
;
30
(
5
):
724
8
.
9.
Clough
E
,
Barrett
T
.
The gene expression omnibus database
.
Methods Mol Biol
.
2016
;
1418
:
93
110
.
10.
Barrett
T
,
Wilhite
SE
,
Ledoux
P
,
Evangelista
C
,
Kim
IF
,
Tomashevsky
M
et al
.
NCBI GEO: archive for functional genomics data sets--update
.
Nucleic Acids Res
.
2013
41
Database issue
D991
5
.
11.
Dennis
G
Jr
,
Sherman
BT
,
Hosack
DA
,
Yang
J
,
Gao
W
,
Lane
HC
et al
.
DAVID: database for annotation, visualization, and integrated discovery
.
Genome Biol
.
2003
4
9
R60
.
12.
Zhang
W
,
Zhao
H
,
Chen
J
,
Zhong
X
,
Zeng
W
,
Li
Z
et al
.
Mining database for the expression and gene regulation network of JAK2 in skin cutaneous melanoma
.
Life Sci
.
2020
;
253
:
117600
.
13.
Szklarczyk
D
,
Gable
AL
,
Nastou
KC
,
Lyon
D
,
Kirsch
R
,
Pyysalo
S
et al
.
The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets
.
Nucleic Acids Res
.
2021
49
D1
D605
12
.
14.
Song
W
,
Ren
J
,
Wang
C
,
Ge
Y
,
Fu
T
.
Analysis of circular RNA-related competing endogenous RNA identifies the immune-related risk signature for colorectal cancer
.
Front Genet
.
2020
;
11
:
505
.
15.
Maier
V
,
Höll
M
,
Dietze
R
,
Mecha
EO
,
Omwandho
COA
,
Tinneberg
HR
et al
.
Adenomyotic glands are highly related to endometrial glands
.
Reprod Biomed Online
.
2020
;
40
(
6
):
769
78
.
16.
Hu
J
,
Qiu
D
,
Yu
A
,
Hu
J
,
Deng
H
,
Li
H
et al
.
YTHDF1 is a potential pan-cancer biomarker for prognosis and immunotherapy
.
Front Oncol
.
2021
;
11
:
607224
.
17.
Cerami
E
,
Gao
J
,
Dogrusoz
U
,
Gross
BE
,
Sumer
SO
,
Aksoy
BA
et al
.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov
.
2012
;
2
(
5
):
401
4
.
18.
Tan
H
,
Kim
P
,
Sun
P
,
Zhou
X
.
miRactDB characterizes miRNA-gene relation switch between normal and cancer tissues across pan-cancer
.
Brief Bioinform
.
2021
22
3
bbaa089
.
19.
Volkamer
A
,
Kuhn
D
,
Rippmann
F
,
Rarey
M
.
Predicting enzymatic function from global binding site descriptors
.
Proteins
.
2013
;
81
(
3
):
479
89
.
20.
Yu
M
,
Qi
B
,
Xiaoxiang
W
,
Xu
J
,
Liu
X
.
Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway
.
Biomed Pharmacother
.
2017
;
90
:
677
85
.
21.
Yu
H
.
Cdc20: a WD40 activator for a cell cycle degradation machine
.
Mol Cell
.
2007
;
27
(
1
):
3
16
.
22.
Moura
IMB
,
Delgado
ML
,
Silva
PMA
,
Lopes
CA
,
do Amaral
JB
,
Monteiro
LS
et al
.
High CDC20 expression is associated with poor prognosis in oral squamous cell carcinoma
.
J Oral Pathol Med
.
2014
;
43
(
3
):
225
31
.
23.
Choi
JW
,
Kim
Y
,
Lee
JH
,
Kim
YS
.
High expression of spindle assembly checkpoint proteins CDC20 and MAD2 is associated with poor prognosis in urothelial bladder cancer
.
Virchows Arch
.
2013
;
463
(
5
):
681
7
.
24.
Dai
L
,
Song
ZX
,
Wei
DP
,
Zhang
JD
,
Liang
JQ
,
Wang
BB
et al
.
CDC20 and PTTG1 are important biomarkers and potential therapeutic targets for metastatic prostate cancer
.
Adv Ther
.
2021
;
38
(
6
):
2973
89
.
25.
Mehlen
P
,
Delloye-Bourgeois
C
,
Chédotal
A
.
Novel roles for Slits and netrins: axon guidance cues as anticancer targets
.
Nat Rev Cancer
.
2011
;
11
(
3
):
188
97
.
26.
Gonda
Y
,
Andrews
WD
,
Tabata
H
,
Namba
T
,
Parnavelas
JG
,
Nakajima
K
et al
.
Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex
.
Cereb Cortex
.
2013
;
23
(
6
):
1495
508
.
27.
Kim
SH
,
Kim
TJ
,
Shin
D
,
Hur
KJ
,
Hong
SH
,
Lee
JY
et al
.
ROBO1 protein expression is independently associated with biochemical recurrence in prostate cancer patients who underwent radical prostatectomy in Asian patients
.
Gland Surg
.
2021
;
10
(
10
):
2956
65
.
28.
Li
Y
,
Deng
G
,
Qi
Y
,
Zhang
H
,
Jiang
H
,
Geng
R
et al
.
Downregulation of LUZP2 is correlated with poor prognosis of low-grade glioma
.
Biomed Res Int
.
2020
;
2020
:
9716720
.
29.
Feng
D
,
Shi
X
,
Zhu
W
,
Zhang
F
,
Li
D
,
Han
P
et al
.
A pan-cancer analysis of the oncogenic role of leucine zipper protein 2 in human cancer
.
Exp Hematol Oncol
.
2022
;
11
(
1
):
55
.
30.
Zhou
Z
,
Wu
X
,
Zhou
Y
,
Yan
W
.
Long non-coding RNA ADAMTS9-AS1 inhibits the progression of prostate cancer by modulating the miR-142-5p/CCND1 axis
.
J Gene Med
.
2021
;
23
(
5
):
e3331
.
31.
Jones
DZ
,
Schmidt
ML
,
Suman
S
,
Hobbing
KR
,
Barve
SS
,
Gobejishvili
L
et al
.
Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells
.
BMC Cancer
.
2018
;
18
(
1
):
421
.
32.
Chen
J
,
Jiang
C
,
Du
J
,
Xie
CL
.
MiR-142-5p protects against 6-OHDA-induced SH-SY5Y cell injury by downregulating BECN1 and autophagy
.
Dose Response
.
2020
;
18
(
1
):
1559325820907016
.
33.
Cai
F
,
Li
J
,
Zhang
J
,
Huang
S
.
Knockdown of circ_CCNB2 sensitizes prostate cancer to radiation through repressing autophagy by the miR-30b-5p/KIF18A Axis
.
Cancer Biother Radiopharm
.
2022
;
37
(
6
):
480
93
.
34.
Shen
YF
,
Zhu
ZY
,
Qian
SX
,
Xu
CY
,
Wang
YP
.
miR-30b protects nigrostriatal dopaminergic neurons from MPP(+)-induced neurotoxicity via SNCA
.
Brain Behav
.
2020
;
10
(
4
):
e01567
.
35.
Wu
D
,
Niu
X
,
Pan
H
,
Zhang
Z
,
Zhou
Y
,
Qu
P
et al
.
MicroRNA-497 targets hepatoma-derived growth factor and suppresses human prostate cancer cell motility
.
Mol Med Rep
.
2016
;
13
(
3
):
2287
92
.
36.
Zhu
W
,
Zhang
H
,
Gao
J
,
Xu
Y
.
Silencing of miR-497-5p inhibits cell apoptosis and promotes autophagy in Parkinson’s disease by upregulation of FGF2
.
Environ Toxicol
.
2021
;
36
(
11
):
2302
12
.
37.
Wang
J
,
Le
T
,
Wei
R
,
Jiao
Y
.
Knockdown of JMJD1C, a target gene of hsa-miR-590-3p, inhibits mitochondrial dysfunction and oxidative stress in MPP+-treated MES23.5 and SH-SY5Y cells
.
Cell Mol Biol
.
2016
;
62
(
3
):
39
45
.
38.
Sun
KX
,
Chen
Y
,
Chen
S
,
Liu
BL
,
Feng
MX
,
Zong
ZH
et al
.
The correlation between microRNA490-3p and TGFα in endometrial carcinoma tumorigenesis and progression
.
Oncotarget
.
2016
;
7
(
8
):
9236
49
.
39.
Fazio
S
,
Berti
G
,
Russo
F
,
Evangelista
M
,
D’Aurizio
R
,
Mercatanti
A
et al
.
The miR-28-5p targetome discovery identified SREBF2 as one of the mediators of the miR-28-5p tumor suppressor activity in prostate cancer cells
.
Cells
.
2020
;
9
(
2
):
354
.
40.
Labib
AY
,
Ammar
RM
,
El-Naga
RN
,
El-Bahy
AAZ
,
Tadros
MG
,
Michel
HE
.
Mechanistic insights into the protective effect of paracetamol against rotenone-induced Parkinson’s disease in rats: possible role of endocannabinoid system modulation
.
Int Immunopharmacol
.
2021
;
94
:
107431
.
41.
Jacobs
EJ
,
Newton
CC
,
Stevens
VL
,
Gapstur
SM
.
A large cohort study of long-term acetaminophen use and prostate cancer incidence
.
Cancer Epidemiol Biomarkers Prev
.
2011
;
20
(
7
):
1322
8
.
42.
Tran
LNK
,
Kichenadasse
G
,
Sykes
PJ
.
Combination therapies using metformin and/or valproic acid in prostate cancer: possible mechanistic interactions
.
Curr Cancer Drug Targets
.
2019
;
19
(
5
):
368
81
.
43.
Ben Sahra
I
,
Laurent
K
,
Loubat
A
,
Giorgetti-Peraldi
S
,
Colosetti
P
,
Auberger
P
et al
.
The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level
.
Oncogene
.
2008
;
27
(
25
):
3576
86
.
44.
Ximenes
JCM
,
Neves
KRT
,
Leal
LKAM
,
do Carmo
MRS
,
Brito
GAC
,
Naffah-Mazzacoratti
MG
et al
.
Valproic acid neuroprotection in the 6-OHDA model of Parkinson’s disease is possibly related to its anti-inflammatory and HDAC inhibitory properties
.
J Neurodegener Dis
.
2015
;
2015
:
313702
.
45.
Monti
B
,
Gatta
V
,
Piretti
F
,
Raffaelli
SS
,
Virgili
M
,
Contestabile
A
.
Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein
.
Neurotox Res
.
2010
;
17
(
2
):
130
41
.
You do not currently have access to this content.