Introduction: Older adults with preclinical Alzheimer’s disease (AD) show changes in on-road driving performance. The impact of preclinical AD on using automated vehicle (AV) technology is unknown. The aim was to evaluate safety and cognitive workload while operating AV technology in drivers with preclinical AD. Introduction: This cross-sectional study included 40 participants: 19 older adults (age 74.16 ± 4.78; MOCA scores 26.42 ± 2.52) with preclinical AD, evidenced by elevated cortical beta-amyloid; and 21 controls (age 73.81 ± 5.62; MOCA scores 28.24 ± 1.67). All participants completed two scenarios in a driving simulator. Scenario 1 included conditional automation with an emergency event that required a manual take-over maneuver. Scenario 2 was identical but with a cognitive distractor task. Emergency response time was the main safety outcome measure. Cognitive workload was calculated using moment-to-moment changes in pupillary size and converted into an Index of Cognitive Activity (ICA). Mann-Whitney U and independent t tests were used to compare group differences. Results: Emergency response times were similar between drivers with preclinical AD and controls in scenario 1 (20.85 s ± 1.08 vs. 20.52 s ± 3.18; p = 0.83) and scenario 2 (14.83 s ± 7.37 vs. 13.45 s ± 10.43; p = 0.92). Likewise, no differences were found in ICA between drivers with preclinical AD and controls in scenario 1 (0.34 ± 0.08 vs. 0.33 ± 0.17; p = 0.74) or scenario 2 (0.30 ± 0.07 vs. 0.29 ± 0.17; p = 0.93). Conclusions: Older drivers with preclinical AD may safely operate AV technology, without increased response times or cognitive workload. Future on-road studies with AV technology should confirm these preliminary results in drivers with preclinical AD.

1.
Tarawneh
R
,
Holtzman
DM
.
The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment
.
Cold Spring Harb Perspect Med
.
2012
2
5
a006148
.
2.
Dubois
B
,
Hampel
H
,
Feldman
HH
,
Scheltens
P
,
Aisen
P
,
Andrieu
S
.
Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria
.
Alzheimers Dement
.
2016
;
12
(
3
):
292
323
.
3.
Roe
CM
,
Stout
SH
,
Rajasekar
G
,
Ances
BM
,
Jones
JM
,
Head
D
.
A 2.5-year longitudinal assessment of naturalistic driving in preclinical Alzheimer’s disease
.
J Alzheim Dis
.
2019
;
68
(
4
):
1625
33
.
4.
Roe
CM
,
Barco
PP
,
Head
DM
,
Ghoshal
N
,
Selsor
N
,
Babulal
GM
.
Amyloid imaging, cerebrospinal fluid biomarkers predict driving performance among cognitively normal individuals
.
Alzheimer Dis Assoc Disord
.
2017
;
31
(
1
):
69
72
.
5.
Roe
CM
,
Babulal
GM
,
Mishra
S
,
Gordon
BA
,
Stout
SH
,
Ott
BR
.
Tau and amyloid positron emission tomography imaging predict driving performance among older adults with and without preclinical Alzheimer’s disease
.
J Alzheim Dis
.
2017
;
61
(
2
):
509
13
.
6.
Roe
CM
,
Babulal
GM
,
Head
DM
,
Stout
SH
,
Vernon
EK
,
Ghoshal
N
.
Preclinical Alzheimer’s disease and longitudinal driving decline
.
Translational Res Clin Interventions
.
2017
;
3
(
1
):
74
82
.
7.
Ott
BR
,
Jones
RN
,
Noto
RB
,
Yoo
DC
,
Snyder
PJ
,
Bernier
JN
.
Brain amyloid in preclinical Alzheimer’s disease is associated with increased driving risk, Alzheimer’s and Dementia: diagnosis
.
Assess Dis Monit
.
2017
;
6
(
1
):
136
42
.
8.
Davis
JD
,
Babulal
GM
,
Papandonatos
GD
,
Burke
EM
,
Rosnick
CB
,
Ott
BR
.
Evaluation of naturalistic driving behavior using in-vehicle monitoring technology in preclinical and early Alzheimer’s disease
.
Front Psychol
.
2020
;
11
:
2925
.
9.
Ranchet
M
,
Tant
M
,
Akinwuntan
AE
,
Morgan
JC
,
Devos
H
.
Fitness-to-drive disagreements in individuals with dementia
.
Gerontologist
.
2017
;
57
(
5
):
833
7
.
10.
Davis
RL
,
Ohman
JM
.
Driving in early-stage Alzheimer’s disease: an integrative review of the literature
.
Res Gerontol Nurs
.
2017
;
10
(
2
):
86
100
.
11.
Knoefel
F
,
Wallace
B
,
Goubran
R
,
Sabra
I
,
Marshall
S
.
Semi-autonomous vehicles as a cognitive assistive device for older adults
.
Geriatrics
.
2019
;
4
(
4
):
63
.
12.
Devos
H
,
Carr
DB
,
Akinwuntan
AE
.
Semi-automated vehicles may not solve older drivers’ mobility needs
.
J Am Geriatr Soc
.
2023
13.
Eskandar
M
,
Giang
WC
,
Motamedi
S
,
Devos
H
,
Koon
L
,
Akinwuntan
AE
.
Designing a reminders system in highly automated vehicles’ interfaces for individuals with mild cognitive impairment
.
Front Future Transp
.
2022
;
10
:
e854553
.
14.
Lee
JD
,
See
KA
.
Trust in automation: designing for appropriate reliance
.
Hum Factors
.
2004
;
46
(
1
):
50
80
.
15.
Lee
JD
.
Driving attention: cognitive engineering in designing attractions and distractions
.
Front Eng
.
2008
;
38
(
4
):
32
8
.
16.
Blanco
M
,
Atwood
J
,
Vasquez
HM
,
Trimble
TE
,
Fitchett
VL
,
Radlbeck
J
Human factors evaluation of level 2 and level 3 automated driving concepts
.
2015
.
17.
Nilsson
I
,
Luborsky
M
,
Rosenberg
L
,
Sandberg
L
,
Boström
A-M
,
Borell
L
.
Perpetuating harms from isolation among older adults with cognitive impairment: observed discrepancies in homecare service documentation, assessment and approval practices
.
BMC Health Serv Res
.
2018
;
18
(
1
):
800
9
.
18.
Hwang
J
,
Park
S
,
Kim
S
.
Effects of participation in social activities on cognitive function among middle-aged and older adults in Korea
.
Int J Environ Res Public Health
.
2018
;
15
(
10
):
2315
.
19.
Milakis
D
,
Snelder
M
,
Van Arem
B
,
Van Wee
B
,
de Almeida Correia
GH
.
Development and transport implications of automated vehicles in The Netherlands: scenarios for 2030 and 2050
.
Eur J Transport Infrastruct Res
.
2017
;
17
(
1
):
63
85
.
20.
Tomasevic
N
,
Young
KL
,
Horberry
T
,
Fildes
B
.
A path towards sustainable vehicle automation: willingness to engage in Level 3 automated driving
.
Sustainability
.
2022
;
14
(
8
):
4602
.
21.
Morando
A
,
Gershon
P
,
Mehler
B
,
Reimer
B
Visual attention and steering wheel control: from engagement to disengagement of tesla autopilot, proceedings of the human factors and ergonomics society annual meeting
Los Angeles, CA
SAGE Publications Sage CA
2021
. p.
1390
4
.
22.
Yurtsever
E
,
Lambert
J
,
Carballo
A
,
Takeda
K
.
A survey of autonomous driving: common practices and emerging technologies
.
IEEE access
.
2020
;
8
:
58443
69
.
23.
Wilbrink
M
,
Lau
M
,
Illgner
J
,
Schieben
A
,
Oehl
M
.
Impact of external human: machine interface communication strategies of automated vehicles on pedestrians’ crossing decisions and behaviors in an urban environment
.
Sustainability
.
2021
;
13
(
15
):
8396
.
24.
Manawadu
UE
,
Kamezaki
M
,
Ishikawa
M
,
Kawano
T
,
Sugano
S
A multimodal human-machine interface enabling situation-Adaptive control inputs for highly automated vehicles, 2017 IEEE intelligent vehicles symposium (IV)
IEEE
2017
.
25.
Devos
H
,
Gustafson
K
,
Liao
K
,
Ahmadnezhad
P
,
Brooks
W
,
Mahnken
JD
.
The relationship between beta-amyloid accumulation and P3 event-related potential in older adults: a pilot study
.
Alzheimer’s Dementia
.
2021
17
S5
e052414
.
26.
Morris
JC
.
The clinical dementia rating (CDR): current version and scoring rules
.
Neurology
.
1993
;
43
(
11
):
2412
4
.
27.
Weintraub
S
,
Besser
L
,
Dodge
HH
,
Teylan
M
,
Ferris
S
,
Goldstein
FC
.
Version 3 of the alzheimer disease centers’ neuropsychological test battery in the Uniform data set (UDS)
.
Alzheimer Dis Assoc Disord
.
2018
;
32
(
1
):
10
7
.
28.
Devos
H
,
Gustafson
K
,
Liao
K
,
Ahmadnezhad
P
,
Estes
B
,
Martin
LE
.
EEG/ERP evidence of possible hyperexcitability in older adults with elevated beta-amyloid
.
Transl Neurodegener
.
2022
;
11
(
1
):
8
10
.
29.
Harn
NR
,
Hunt
SL
,
Hill
J
,
Vidoni
E
,
Perry
M
,
Burns
JM
.
Augmenting amyloid PET interpretations with quantitative information improves consistency of early amyloid detection
.
Clin Nucl Med
.
2017
;
42
(
8
):
577
81
.
30.
Clark
CM
,
Pontecorvo
MJ
,
Beach
TG
,
Bedell
BJ
,
Coleman
RE
,
Doraiswamy
PM
.
Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study
.
Lancet Neurol
.
2012
;
11
(
8
):
669
78
.
31.
Joshi
AD
,
Pontecorvo
MJ
,
Clark
CM
,
Carpenter
AP
,
Jennings
DL
,
Sadowsky
CH
.
Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects
.
J Nucl Med
.
2012
;
53
(
3
):
378
84
.
32.
Nasreddine
ZS
,
Phillips
NA
,
Bédirian
V
,
Charbonneau
S
,
Whitehead
V
,
Collin
I
.
The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment
.
J Am Geriatr Soc
.
2005
;
53
(
4
):
695
9
.
33.
Nucci
M
,
Mapelli
D
,
Mondini
S
.
Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve
.
Aging Clin Exp Res
.
2012
;
24
(
3
):
218
26
.
34.
Bimberg
P
,
Weissker
T
,
Kulik
A
On the usage of the simulator sickness questionnaire for virtual reality research, 2020 IEEE conference on virtual reality and 3D user interfaces abstracts and workshops (VRW)
IEEE
2020
.
35.
Kennedy
RS
,
Lane
NE
,
Berbaum
KS
,
Lilienthal
MG
.
Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness
.
Int J aviation Psychol
.
1993
;
3
(
3
):
203
20
.
36.
Kahya
M
,
Wood
TA
,
Sosnoff
JJ
,
Devos
H
.
Increased postural demand is associated with greater cognitive workload in healthy young adults: a pupillometry study
.
Front Hum Neurosci
.
2018
;
12
:
288
.
37.
Moon
S
,
Kahya
M
,
Lyons
KE
,
Pahwa
R
,
Akinwuntan
AE
,
Devos
H
.
Cognitive workload during verbal abstract reasoning in Parkinson’s disease: a pilot study
.
Int J Neurosci
.
2021
;
131
(
5
):
504
10
.
38.
Marshall
SP
.
Identifying cognitive state from eye metrics
.
Aviat Space Environ Med
.
2007
78
5 Suppl
B165
75
.
39.
Kahya
M
,
Lyons
KE
,
Pahwa
R
,
Akinwuntan
AE
,
He
J
,
Devos
H
.
Pupillary response to postural demand in Parkinson’s disease
.
Front Bioeng Biotechnol
.
2021
;
9
:
237
.
40.
Kahya
M
,
Lyons
KE
,
Pahwa
R
,
Akinwuntan
AE
,
He
J
,
Devos
H
.
Reliability and validity of pupillary response during dual-task balance in Parkinson Disease
.
Arch Phys Med Rehabil
.
2021
;
102
(
3
):
448
55
.
41.
Kahya
M
,
Liao
K
,
Gustafson
KM
,
Akinwuntan
AE
,
Manor
B
,
Devos
H
.
Cortical correlates of increased postural task difficulty in young adults: a combined pupillometry and EEG study
.
Sensors
.
2022
;
22
(
15
):
5594
.
42.
Kim
M
,
Barrett
A
,
Heilman
K
.
Lateral asymmetries of pupillary responses
.
Cortex
.
1998
;
34
(
5
):
753
62
.
43.
Ranchet
M
,
Morgan
JC
,
Akinwuntan
AE
,
Devos
H
.
Cognitive workload across the spectrum of cognitive impairments: a systematic review of physiological measures
.
Neurosci Biobehav Rev
.
2017
;
80
:
516
37
.
44.
Hart
SG
,
Staveland
LE
.
Development of NASA-TLX (task Load Index): results of empirical and theoretical research
.
Adv Psychol
.
1988
;
52
:
139
83
.
45.
Cary
NSII
,
Cary
NC
SAS/ACCESS® 9.4 interface to ADABAS
SAS Institute Inc
2021
.
46.
I.S.S. 27
SPSS Inc
Chicago, Ill., USA
2021
.
47.
W. H. Organization
Global age-friendly cities: a guide
World Health Organization
2007
.
48.
Yeom
HA
,
Fleury
J
,
Keller
C
.
Risk factors for mobility limitation in community-dwelling older adults: a social ecological perspective
.
Geriatr Nurs
.
2008
;
29
(
2
):
133
40
.
49.
Metz
DH
.
Mobility of older people and their quality of life
.
Transport policy
.
2000
;
7
(
2
):
149
52
.
50.
Groessl
EJ
,
Kaplan
RM
,
Rejeski
WJ
,
Katula
JA
,
King
AC
,
Frierson
G
.
Health-related quality of life in older adults at risk for disability
.
Am J Prev Med
.
2007
;
33
(
3
):
214
8
.
51.
Dickerson
AE
,
Molnar
LJ
,
Eby
DW
,
Adler
G
,
Bedard
M
,
Berg-Weger
M
.
Transportation and aging: a research agenda for advancing safe mobility
.
Gerontologist
.
2007
;
47
(
5
):
578
90
.
52.
O’Neill
D
.
Safe mobility for older people
.
Rev Clin Gerontol
.
2000
;
10
(
2
):
181
91
.
53.
Liappas
N
,
Teriús-Padrón
JG
,
García-Betances
RI
,
Cabrera-Umpiérrez
MF
.
Advancing smart home awareness: a conceptual computational modelling framework for the execution of daily activities of people with Alzheimer’s disease
.
Sensors
.
2021
;
22
(
1
):
166
.
54.
Jack
CR
Jr
,
Bennett
DA
,
Blennow
K
,
Carrillo
MC
,
Dunn
B
,
Haeberlein
SB
.
NIA-AA research framework: toward a biological definition of Alzheimer’s disease
.
Alzheimer’s Dementia
.
2018
;
14
(
4
):
535
62
.
55.
Amariglio
RE
,
Donohue
MC
,
Marshall
GA
,
Rentz
DM
,
Salmon
DP
,
Ferris
SH
.
Tracking early decline in cognitive function in older individuals at risk for Alzheimer disease dementia: the Alzheimer’s Disease Cooperative Study Cognitive Function Instrument
.
JAMA Neurol
.
2015
;
72
(
4
):
446
54
.
56.
Doraiswamy
PM
,
Sperling
RA
,
Coleman
RE
,
Johnson
KA
,
Reiman
EM
,
Davis
MD
.
Amyloid-β assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study
.
Neurology
.
2012
;
79
(
16
):
1636
44
.
57.
Smailagic
N
,
Lafortune
L
,
Kelly
S
,
Hyde
C
,
Brayne
C
.
18F-FDG PET for prediction of conversion to Alzheimer’s disease dementia in people with mild cognitive impairment: an updated systematic review of test accuracy
.
J Alzheimers Dis
.
2018
;
64
(
4
):
1175
94
.
58.
Mullen
N
,
Charlton
J
,
Devlin
A
,
Bedard
M
Simulator validity: behaviours observed on the simulator and on the road, Handbook of driving simulation for engineering, medicine and psychology
CRC Press
2011
.
You do not currently have access to this content.