The gut microbiota shows a wide inter-individual variation, but its within-individual variation is relatively stable over time. A functional core microbiome, provided by abundant bacterial taxa, seems to be common to various human hosts regardless of their gender, geographic location, and age. With advancing chronological age, the gut microbiota becomes more diverse and variable. However, when measures of biological age are used with adjustment for chronological age, overall richness decreases, while a certain group of bacteria associated with frailty increases. This highlights the importance of considering biological or functional measures of aging. Studies using model organisms indicate that age-related gut dysbiosis may contribute to unhealthy aging and reduced longevity. The gut microbiome depends on the host nutrient signaling pathways for its beneficial effects on host health and lifespan, and gut dysbiosis disrupting the interdependence may diminish the beneficial effects or even have reverse effects. Gut dysbiosis can trigger the innate immune response and chronic low-grade inflammation, leading to many age-related degenerative pathologies and unhealthy aging. The gut microbiota communicates with the host through various biomolecules, nutrient signaling-independent pathways, and epigenetic mechanisms. Disturbance of these communications by age-related gut dysbiosis can affect the host health and lifespan. This may explain the impact of the gut microbiome on health and aging.

1.
Sender R, Fuchs S, Milo R: Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14:e1002533.
2.
Sommer F, Backhed F: The gut microbiota – masters of host development and physiology. Nat Rev Microbiol 2013; 11: 227–238.
3.
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65.
4.
Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW: Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 2011; 108(suppl 1): 4586–4591.
5.
Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI: The long-term stability of the human gut microbiota. Science 2013; 341: 1237439.
6.
Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P: Genomic variation landscape of the human gut microbiome. Nature 2013; 493: 45–50.
7.
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI: Human gut microbiome viewed across age and geography. Nature 2012; 486: 222–227.
8.
Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW: Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488: 178–184.
9.
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S: Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017; 74: 3769–3787.
10.
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R: Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220–230.
11.
Lloyd-Price J, Abu-Ali G, Huttenhower C: The healthy human microbiome. Genome Med 2016; 8: 51.
12.
Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M: Gut microbiota and extreme longevity. Curr Biol 2016; 26: 1480–1485.
13.
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J; MetaHIT Consortium, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P: Enterotypes of the human gut microbiome. Nature 2011; 473: 174–180.
14.
Kim S, Jazwinski SM: Quantitative measures of healthy aging and biological age. Healthy Aging Res 2015; 4:pii: 26.
15.
van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW: Fecal microbiota composition and frailty. Appl Environ Microbiol 2005; 71: 6438–6442.
16.
Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, O’Toole PW, Spector TD, Steves CJ: Signatures of early frailty in the gut microbiota. Genome Med 2016; 8: 8.
17.
Maffei VJ, Kim S, Blanchard E 4th, Luo M, Jazwinski SM, Taylor CM, Welsh DA: Biological Aging and the Human Gut Microbiota. J Gerontol A Biol Sci Med Sci 2017; 72: 1474–1482.
18.
Anderson OS, Sant KE, Dolinoy DC: Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 2012; 23: 853–859.
19.
Alic N, Partridge L: Death and dessert: nutrient signalling pathways and ageing. Curr Opin Cell Biol 2011; 23: 738–743.
20.
Alcedo J, Kenyon C: Regulation of C. elegans Longevity by Specific Gustatory and Olfactory Neurons. Neuron 2004; 41: 45–55.
21.
Libert S, Chao Y, Chu X, Pletcher SD: Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NFkappaB signaling. Aging Cell 2006; 5: 533–543.
22.
Martins R, Lithgow GJ, Link W: Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2016; 15: 196–207.
23.
Kwon ES, Narasimhan SD, Yen K, Tissenbaum HA: A new DAF-16 isoform regulates longevity. Nature 2010; 466: 498–502.
24.
Libina N, Berman JR, Kenyon C: Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 2003; 115: 489–502.
25.
Clark RI, Salazar A, Yamada R, Fitz-Gibbon S, Morselli M, Alcaraz J, Rana A, Rera M, Pellegrini M, Ja WW, Walker DW: Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality. Cell reports 2015; 12: 1656–1667.
26.
Bolukbasi E, Khericha M, Regan JC, Ivanov DK, Adcott J, Dyson MC, Nespital T, Thornton JM, Alic N, Partridge L: Intestinal fork head regulates nutrient absorption and promotes longevity. Cell reports 2017; 21: 641–653.
27.
Saxton RA, Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell 2017; 168: 960–976.
28.
Hurez V, Dao V, Liu A, Pandeswara S, Gelfond J, Sun L, Bergman M, Orihuela CJ, Galvan V, Padron A, Drerup J, Liu Y, Hasty P, Sharp ZD, Curiel TJ: Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell 2015; 14: 945–956.
29.
Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, Sutlief E, Tung H, Vizzini N, Chen B, Smith K, Meza D, Yajima M, Beyer RP, Kerr KF, Davis DJ, Gillespie CH, Snyder JM, Treuting PM, Kaeberlein M: Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife 2016; 5:pii:e16351.
30.
Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, Sowa JN, Sizovs A, Du G, Wang J, Herman C, Wang MC: Microbial genetic composition tunes host longevity. Cell 2017; 169: 1249–1262.e13.
31.
Lau K, Srivatsav V, Rizwan A, Nashed A, Liu R, Shen R, Akhtar M: Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients 2017; 9:pii:E859.
32.
Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, Valenzano DR: Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife 2017; 6:pii:e27014.
33.
Jasper H: Exploring the physiology and pathology of aging in the intestine of Drosophila melanogaster. Invertebr Reprod Dev 2015; 59(suppl 1): 51–58.
34.
Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H: Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 2010; 6:e1001159.
35.
Ren C, Webster P, Finkel SE, Tower J: Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 2007; 6: 144–152.
36.
Guo L, Karpac J, Tran SL, Jasper H: PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 2014; 156: 109–122.
37.
Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, Kang D, Lee WJ: Regulation of DUOX by the Galphaq-Phospholipase Cbeta-Ca2+ Pathway in Drosophila Gut Immunity. Dev Cell 2009; 16: 386–397.
38.
Leulier F, Royet J: Maintaining immune homeostasis in fly gut. Nat Immunol 2009; 10: 936–938.
39.
Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de Jongh C, Savelkoul HFJ, De Jonge MI, Boekschoten MV, Smidt H, Faas MM, de Vos P: Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol 2017; 8: 1385.
40.
Turta O, Rautava S: Antibiotics, obesity and the link to microbes – what are we doing to our children? BMC Med 2016; 14: 57.
41.
Chan YK, Estaki M, Gibson DL: Clinical consequences of diet-induced dysbiosis. Ann Nutr Metab 2013; 63(suppl 2): 28–40.
42.
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI: Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341: 1241214.
43.
Surana NK, Kasper DL: Moving beyond microbiome-wide associations to causal microbe identification. Nature 2017; 552: 244–247.
44.
Rowan S, Jiang S, Korem T, Szymanski J, Chang ML, Szelog J, Cassalman C, Dasuri K, McGuire C, Nagai R, Du XL, Brownlee M, Rabbani N, Thornalley PJ, Baleja JD, Deik AA, Pierce KA, Scott JM, Clish CB, Smith DE, Weinberger A, Avnit-Sagi T, Lotan-Pompan M, Segal E, Taylor A: Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci U S A 2017; 114: E4472–E4481.
45.
Yekta Z, Xie D, Bogner HR, Weber DR, Zhang X, Harhay M, Reese PP: The association of antidepressant medications and diabetic retinopathy among people with diabetes. J Diabetes Complications 2015; 29: 1077–1084.
46.
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY: Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161: 264–276.
47.
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK: Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016; 167: 1469–1480.e12.
48.
Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA: α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2017; 2:pii: 92295.
49.
Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, Neher JJ, Fak F, Jucker M, Lasser T, Bolmont T: Reduction of Abeta amyloid pathology in -APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7: 41802.
50.
Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, Kim PS, Whon TW, Bae JW: Chronic repression of mTOR complex 2 induces changes in the gut microbiota of diet-induced obese mice. Sci Rep 2016; 6: 30887.
51.
Virk B, Correia G, Dixon DP, Feyst I, Jia J, Oberleitner N, Briggs Z, Hodge E, Edwards R, Ward J, Gems D, Weinkove D: Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol 2012; 10: 67.
52.
Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013; 153: 228–239.
53.
Virk B, Jia J, Maynard CA, Raimundo A, Lefebvre J, Richards SA, Chetina N, Liang Y, Helliwell N, Cipinska M, Weinkove D: Folate acts in E. coli to accelerate C. elegans aging independently of bacterial biosynthesis. Cell reports 2016; 14: 1611–1620.
54.
Snyder SH, Bredt DS: Biological roles of nitric oxide. Sci Am 1992; 266: 68–71, 74–67.
55.
Vermeiren J, Van de Wiele T, Verstraete W, Boeckx P, Boon N: Nitric oxide production by the human intestinal microbiota by dissimilatory nitrate reduction to ammonium. J Biomed Biotechnol 2009; 2009: 284718.
56.
Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, Nudler E: Bacterial nitric oxide extends the lifespan of C. elegans. Cell 2013; 152: 818–830.
57.
Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, O’Toole PW, Brigidi P: Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 2013; 5: 902–912.
58.
Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR: HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 2014; 127: 1441–1453.
59.
Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Van Remmen H: The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 2015; 14: 957–970.
60.
Rahman MM, Kukita A, Kukita T, Shobuike T, Nakamura T, Kohashi O: Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 2003; 101: 3451–3459.
61.
Vaiserman AM, Kolyada AK, Koshel NM, Simonenko AV, Pasyukova EG: Effect of histone deacetylase inhibitor sodium butyrate on viability and life span in Drosophila melanogaster. Adv Gerontol 2013; 3: 30–34.
62.
Blank M, Werenicz A, Velho LA, Pinto DF, Fedi AC, Lopes MW, Peres TV, Leal RB, Dornelles AS, Roesler R: Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neurosci Lett 2015; 594: 76–81.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.