Receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) have originally been described for their key roles in bone metabolism and the immune system. Subsequently, it has been shown that the RANKL-RANK system is critical in the formation of mammary epithelia in lactating females and the thermoregulation of the central nervous system. RANKL and RANK are under the tight control of the female sex hormones estradiol and progesterone. A reduction of the circulating female sex hormones leading to an increase in RANKL-RANK signaling is the leading cause of osteoporosis in postmenopausal women. Denosumab, a human monoclonal anti-RANKL antibody, has been approved for the treatment of postmenopausal osteoporosis, where it is showing great promise. In addition, RANKL-RANK signaling also plays a critical role in other bone pathologies, bone metastasis or hormone-driven breast cancer. This review will highlight some of the functions of RANKL-RANK in bone turnover, the immune system and brain with a focus on the regulatory role of the female sex hormones.

1.
Ducy P, Schinke T, Karsenty G: The osteoblast: a sophisticated fibroblast under central surveillance. Science 2000;289:1501-1504.
[PubMed]
2.
Teitelbaum SL: Bone resorption by osteoclasts. Science 2000;289:1504-1508.
[PubMed]
3.
Rodan GA, Martin TJ: Role of osteoblasts in hormonal control of bone resorption - a hypothesis. Calcif Tissue Int 1981;33:349-351.
[PubMed]
4.
Lacey DL, et al: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-176.
[PubMed]
5.
Nakagawa N, et al: RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 1998;253:395-400.
[PubMed]
6.
Simonet WS, et al: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309-319.
[PubMed]
7.
Yasuda H, et al: Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998;139:1329-1337.
[PubMed]
8.
Wong BR, et al: TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 1997;272:25190-25194.
[PubMed]
9.
Anderson DM, et al: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390:175-179.
[PubMed]
10.
Kong YY, et al: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999;402:304-309.
[PubMed]
11.
Kong YY, et al: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315-323.
[PubMed]
12.
Walsh MC, et al: Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 2006;24:33-63.
[PubMed]
13.
Hanada R, et al: Central control of fever and female body temperature by RANKL/RANK. Nature 2009;462:505-509.
[PubMed]
14.
Shimamura M, et al: OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci USA 2014;111:8191-8196.
[PubMed]
15.
Hikita A, et al: Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-kappaB ligand. J Biol Chem 2006;281:36846-36855.
[PubMed]
16.
Lynch CC, et al: MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 2005;7:485-496.
[PubMed]
17.
Yavropoulou MP, Yovos JG: Osteoclastogenesis - current knowledge and future perspectives. J Musculoskelet Neuronal Interact 2008;8:204-216.
[PubMed]
18.
Dai XM, et al: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002;99:111-120.
[PubMed]
19.
Wada T, Nakashima T, Hiroshi N, Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006;12:17-25.
[PubMed]
20.
Nakashima T, et al: Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 2011;17:1231-1234.
[PubMed]
21.
Armstrong AP, et al: A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem 2002;277:44347-44356.
[PubMed]
22.
Lomaga MA, et al: TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999;13:1015-1024.
[PubMed]
23.
Naito A, et al: Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999;4:353-362.
[PubMed]
24.
Matsumoto M, Sudo T, Maruyama M, Osada H, Tsujimoto M: Activation of p38 mitogen-activated protein kinase is crucial in osteoclastogenesis induced by tumor necrosis factor. FEBS Lett 2000;486:23-28.
[PubMed]
25.
Grigoriadis AE, et al: c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994;266:443-448.
[PubMed]
26.
Iotsova V, et al: Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 1997;3:1285-1289.
[PubMed]
27.
Wong BR, et al: TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999;4:1041-1049.
[PubMed]
28.
Whyte MP, et al: Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med 2002;347:175-184.
[PubMed]
29.
Bucay N, et al: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998;12:1260-1268.
[PubMed]
30.
Mizuno A, et al: Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998;247:610-615.
[PubMed]
31.
Guerrini MM, et al: Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 2008;83:64-76.
[PubMed]
32.
Dougall WC, et al: RANK is essential for osteoclast and lymph node development. Genes Dev 1999;13:2412-2424.
[PubMed]
33.
Perlot T, Penninger JM: Development and function of murine B cells lacking RANK. J Immunol 2012;188:1201-1205.
[PubMed]
34.
Kawai T, et al: B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol 2006;169:987-998.
[PubMed]
35.
Croucher PI, et al: Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 2001;98:3534-3540.
[PubMed]
36.
Akiyama T, et al: The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 2008;29:423-437.
[PubMed]
37.
Gardner JM, et al: Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 2008;321:843-847.
[PubMed]
38.
Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R: PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 2006;116:2869-2879.
[PubMed]
39.
Evely RS, et al: Structural requirements for the action of parathyroid hormone-related protein (PTHrP) on bone resorption by isolated osteoclasts. J Bone Miner Res 1991;6:85-93.
[PubMed]
40.
Akatsu T, et al: Prostaglandins promote osteoclast-like cell formation by a mechanism involving cyclic adenosine 3′,5′-monophosphate in mouse bone marrow cell cultures. J Bone Miner Res 1989;4:29-35.
[PubMed]
41.
Akatsu T, et al: Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J Bone Miner Res 1991;6:183-189.
[PubMed]
42.
Takahashi N, et al: Induction of calcitonin receptors by 1 alpha, 25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology 1988;123:1504-1510.
[PubMed]
43.
Zallone A: Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann NY Acad Sci 2006;1068:173-179.
[PubMed]
44.
Waldner MJ, Foersch S, Neurath MF: Interleukin-6 - a key regulator of colorectal cancer development. Int J Biol Sci 2012;8:1248-1253.
[PubMed]
45.
Idowu MO, et al: CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 2012;43:364-373.
[PubMed]
46.
Manolagas SC, Jilka RL: Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332:305-311.
[PubMed]
47.
Pacifici R: Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 1996;11:1043-1051.
[PubMed]
48.
Bord S, Ireland DC, Beavan SR, Compston JE: The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone 2003;32:136-141.
[PubMed]
49.
Hofbauer LC, et al: Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999;140:4367-4370.
[PubMed]
50.
Bellido T, et al: Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 1995;95:2886-2895.
[PubMed]
51.
Kousteni S, et al: Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001;104:719-730.
[PubMed]
52.
Hughes DE, et al: Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 1996;2:1132-1136.
[PubMed]
53.
Kameda T, et al: Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 1997;186:489-495.
[PubMed]
54.
Cenci S, et al: Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 2000;106:1229-1237.
[PubMed]
55.
Cenci S, et al: Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA 2003;100:10405-10410.
[PubMed]
56.
Fata JE, et al: The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103:41-50.
[PubMed]
57.
Kovacs CS, Kronenberg HM: Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 1997;18:832-872.
[PubMed]
58.
Beleut M, et al: Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci USA 2010;107:2989-2994.
[PubMed]
59.
Mukherjee A, et al: Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J 2010;24:4408-4419.
[PubMed]
60.
Asselin-Labat ML, et al: Control of mammary stem cell function by steroid hormone signalling. Nature 2010;465:798-802.
[PubMed]
61.
Tanos T, et al: Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med 2013;5:182ra155.
[PubMed]
62.
Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM: Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci USA 2003;100:9744-9749.
[PubMed]
63.
Schramek D, et al: Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 2010;468:98-102.
[PubMed]
64.
Kartsogiannis V, et al: Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 1999;25:525-534.
[PubMed]
65.
Blatteis CM, Li S, Li Z, Feleder C, Perlik V: Cytokines, PGE2 and endotoxic fever: a re-assessment. Prostaglandins Other Lipid Mediat 2005;76:1-18.
[PubMed]
66.
Jones DH, et al: Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006;440:692-696.
[PubMed]
67.
Rossouw JE, et al: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 2002;288:321-333.
[PubMed]
68.
Beral V; Million Women Study Collaborators: Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 2003;362:419-427.
[PubMed]
69.
Cummings SR, et al: Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 2009;361:756-765.
[PubMed]
70.
Stopeck AT, et al: Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 2010;28:5132-5139.
[PubMed]
71.
Fizazi K, Sternberg CN, Fitzpatrick JM, Watson RW, Tabesh M: Role of targeted therapy in the treatment of advanced prostate cancer. BJU Int 2010;105:748-767.
[PubMed]
72.
Henry DH, et al: Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011;29:1125-1132.
[PubMed]
73.
Garcia-Gomez A, Sanchez-Guijo F, Del Canizo MC, San Miguel JF, Garayoa M: Multiple myeloma mesenchymal stromal cells: contribution to myeloma bone disease and therapeutics. World J Stem Cells 2014;6:322-343.
[PubMed]
74.
Thomas DM: RANKL, denosumab, and giant cell tumor of bone. Curr Opin Oncol 2012;24:397-403.
[PubMed]
75.
Schramek D, Sigl V, Penninger JM: RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol Metab 2011;22:188-194.
[PubMed]
76.
Gonzalez-Suarez E, et al: RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010;468:103-107.
[PubMed]
77.
Tsourdi E, Rachner TD, Rauner M, Hamann C, Hofbauer LC: Denosumab for bone diseases: translating bone biology into targeted therapy. Eur J Endocrinol 2011;165:833-840.
[PubMed]
78.
Loser K, et al: Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 2006;12:1372-1379.
[PubMed]
79.
Stolina M, et al: Continuous RANKL inhibition in osteoprotegerin transgenic mice and rats suppresses bone resorption without impairing lymphorganogenesis or functional immune responses. J Immunol 2007;179:7497-7505.
[PubMed]
You do not currently have access to this content.