Background: Chronic administration of <smlcap>D</smlcap>-galactose (<smlcap>D</smlcap>-gal) results in oxidative stress and chronic inflammatory aging. Age-related changes in the brain result in neurovascular damage and blood-brain barrier (BBB) dysfunction. However, little is known regarding <smlcap>D</smlcap>-gal-induced neurovascular damage, as well as the protective effects of huperzine A. Objective: The purpose of this study was to utilize a<smlcap> D</smlcap>-gal-induced rat model to investigate the activation of neurovascular inflammatory damage and apoptosis in the rat hippocampus and to understand whether huperzine A alleviates <smlcap>D</smlcap>-gal-induced neuronal and vascular inflammatory injury. Methods: Aging rats were treated with <smlcap>D</smlcap>-gal (300 mg/kg s.c. for 8 weeks), were coadministered <smlcap>D</smlcap>-gal and huperzine A (<smlcap>D</smlcap>-gal 300 mg/kg and huperzine A 0.1 mg/kg s.c. for 8 weeks) or served as the saline-treated control group rats (same volume of saline given subcutaneously for 8 weeks). Changes in hippocampal morphology and biomarkers of inflammatory damage were analyzed. Results: Our study revealed that chronic administration of <smlcap>D</smlcap>-gal resulted in the activation of glia and vascular endothelial cells and upregulation of mRNA and protein levels of cell-associated adhesion molecules and inflammatory cytokines via nuclear factor (NF)-κB inhibitor degradation and NF-κB nuclear translocation. The inflammatory injury caused significant BBB dysfunction, decreased density of tight junctions (TJs) and apoptosis in the rat hippocampus. Coadministration of huperzine A not only markedly inhibited the <smlcap>D</smlcap>-gal-induced increase in acetylcholinesterase (AChE) activity, but also alleviated <smlcap>D</smlcap>-gal-induced neurovascular damage by inhibiting <smlcap>D</smlcap>-gal-induced NF-κB activation, improving cerebrovascular function and suppressing the <smlcap>D</smlcap>-gal-induced decrease in the density and protein levels of TJs and cell apoptosis. Conclusions: Our findings provided evidence that <smlcap>D</smlcap>-gal induced a proinflammatory phenotype mediated by NF-κB in the rat hippocampus. Moreover, huperzine A suppressed <smlcap>D</smlcap>-gal-induced neurovascular damage and BBB dysfunction, partly by preventing NF-κB nuclear translocation. The inhibiting effect of huperzine A on AChE activity might play an important role in attenuating <smlcap>D</smlcap>-gal-induced inflammatory damage.

1.
Anand KV, Mohamed JM, Thomas PA, Geraldine P: Protective role of chrysin against oxidative stress in D-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int 2012;12:741-750.
[PubMed]
2.
Aydin S, Yanar K, Atukeren P, Dalo E, Sitar ME, Uslu E, Caf N, Cakatay U: Comparison of oxidative stress biomarkers in renal tissues of D-galactose induced, naturally aged and young rats. Biogerontology 2012;13:251-260.
[PubMed]
3.
Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J: Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 2006;84:647-654.
[PubMed]
4.
Lei M, Hua X, Xiao M, Ding J, Han Q, Hu G: Impairments of astrocytes are involved in the D-galactose-induced brain aging. Biochem Biophys Res Commun 2008;369:1082-1087.
[PubMed]
5.
Hua X, Lei M, Ding J, Han Q, Hu G, Xiao M: Pathological and biochemical alterations of astrocytes in ovariectomized rats injected with D-galactose: a potential contribution to Alzheimer's disease processes. Exp Neurol 2008;210:709-718.
[PubMed]
6.
Kumar A, Prakash A, Dogra S: Centella asiatica attenuates D-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Int J Alzheimers Dis 2011;2011:347569.
[PubMed]
7.
Kumar A, Prakash A, Dogra S: Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol 2010;48:626-632.
[PubMed]
8.
Gill R, Tsung A, Billiar T: Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med 2010;48:1121-1132.
[PubMed]
9.
Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L: Oxidative stress, inflamm-aging and immunosenescence. J Proteomics 2011;74:2313-2323.
[PubMed]
10.
Ruan Q, Liu F, Gao Z, Kong D, Hu X, Shi D, Bao Z, Yu Z: The anti-inflamm-aging and hepatoprotective effects of huperzine A in D-galactose-treated rats. Mech Ageing Dev 2013;134:89-97.
[PubMed]
11.
Song X, Bao M, Li D, Li YM: Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 1999;108:239-251.
[PubMed]
12.
Chen GY, Nunez G: Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10:826-837.
[PubMed]
13.
Bartus RT, Dean RL, Beer B, Lippa AS: The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408-414.
[PubMed]
14.
Zhong SZ, Ge QH, Qu R, Li Q, Ma SP: Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by D-galactose in ICR mice. J Neurol Sci 2009;277:58-64.
[PubMed]
15.
Liu L, Su Y, Yang W, Xiao M, Gao J, Hu G: Disruption of neuronal-glial-vascular units in the hippocampus of ovariectomized mice injected with D-galactose. Neuroscience 2010;169:596-608.
[PubMed]
16.
Del ZG: Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2009;158:972-982.
[PubMed]
17.
Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, Singh I: Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflamm 2009;6:32.
[PubMed]
18.
Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, Al-Abed Y, Metz CN: Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 2005;201:1113-1123.
[PubMed]
19.
Wang ZF, Wang J, Zhang HY, Tang XC: Huperzine A exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia. J Neurochem 2008;106:1594-1603.
[PubMed]
20.
Wang J, Zhang HY, Tang XC: Huperzine A improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res 2010;88:807-815.
[PubMed]
21.
Tsukita S, Furuse M: Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 2000;149:13-16.
[PubMed]
22.
Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL: Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997;110:1603-1613.
[PubMed]
23.
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S: Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003;161:653-660.
[PubMed]
24.
Zlokovic BV: New therapeutic targets in the neurovascular pathway in Alzheimer's disease. Neurotherapeutics 2008;5:409-414.
[PubMed]
25.
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25.
[PubMed]
26.
Mooradian AD: The effect of aging on the blood-brain barrier. Neurobiol Aging 1998;9:31-39.
[PubMed]
27.
Mooradian AD, Haas MJ, Chehade JM: Age-related changes in rat cerebral occludin and zonula occludens-1 (Zo-1). Mech Ageing Dev 2003;124:143-146.
[PubMed]
28.
Ujiie M, Dickstein DL, Carlow DA, Jefferies WA: Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 2003;10:463-470.
[PubMed]
29.
Biron KE, Dickstein DL, Gopaul R, Jefferies WA: Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease. PLoS One 2011;6:e23789.
[PubMed]
30.
Zhu X, Smith MA, Honda K, Aliev G, Moreira PI, Nunomura A, Casadesus G, Harris PL, Siedlak SL, Perry G: Vascular oxidative stress in Alzheimer disease. J Neurol Sci 2007;257:240-246.
[PubMed]
31.
Pun PB, Lu J, Moochhala S: Involvement of ROS in BBB dysfunction. Free Radic Res 2009;43:348-364.
[PubMed]
32.
Brenner T, Nizri E, Irony-Tur-Sinai M, Hamra-Amitay Y, Wirguin I: Acetylcholinesterase inhibitors and cholinergic modulation in myasthenia gravis and neuroinflammation. J Neuroimmunol 2008;201-202:121-127.
[PubMed]
33.
Wang R, Yan H, Tang XC: Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 2006;27:1-26.
[PubMed]
34.
Zhang HY, Tang XC: Neuroprotective effects of huperzine A: new therapeutic targets for neurodegenerative disease. Trends Pharmacol Sci 2006;27:619-625.
[PubMed]
35.
Zhang HY, Yan H, Tang XC: Non-cholinergic effects of huperzine A: beyond inhibition of acetylcholinesterase. Cell Mol Neurobiol 2008;28:173-183.
[PubMed]
36.
Gao X, Zheng CY, Yang L, Tang XC, Zhang HY: Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med 2009;46:1454-1462.
[PubMed]
37.
Gordon RK, Nigam SV, Weitz JA, Dave JR, Doctor BP, Ved HS: The NMDA receptor ion channel: a site for binding of huperzine A. J Appl Toxicol 2001;21(suppl 1):S47-S51.
[PubMed]
38.
Wang R, Ashwal S, Tone B, Tian HR, Badaut J, Rasmussen A, Obenaus A: Albumin reduces blood-brain barrier permeability but does not alter infarct size in a rat model of neonatal stroke. Pediatr Res 2007;62:261-266.
[PubMed]
39.
Badaut J, Copin JC, Fukuda AM, Gasche Y, Schaller K, Da SR: Increase of arginase activity in old apolipoprotein-E deficient mice under western diet associated with changes in neurovascular unit. J Neuroinflamm 2012;9:132.
[PubMed]
40.
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods 2001;25:402-408.
[PubMed]
41.
Goerdt S, Steckel F, Schulze-Osthoff K, Hagemeier HH, Macher E, Sorg C: Characterization and differential expression of an endothelial cell-specific surface antigen in continuous and sinusoidal endothelial, in skin vascular lesions and in vitro. Exp Cell Biol 1989;57:185-192.
[PubMed]
42.
Nishiyama K, Takaji K, Kataoka K, Kurihara Y, Yoshimura M, Kato A, Ogawa H, Kurihara H: ID1 gene transfer confers angiogenic property on fully differentiated endothelial cells and contributes to therapeutic angiogenesis. Circulation 2005;112:2840-2850.
[PubMed]
43.
Wassmann S, Werner N, Czech T, Nickenig G: Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ Res 2006;99:e74-e83.
[PubMed]
44.
Hattiangady B, Shetty AK: Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 2008;29:129-147.
[PubMed]
45.
Martinon F: Signaling by ROS drives inflammasome activation. Eur J Immunol 2010;40:616-619.
[PubMed]
46.
Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ: HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010;28:367-388.
[PubMed]
47.
Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H: Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 2011;15:1305-1323.
[PubMed]
48.
Sugamura K, Keaney JJ: Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 2011;51:978-992.
[PubMed]
49.
Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR: Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell 2008;7:805-812.
[PubMed]
50.
Kacimi R, Giffard RG, Yenari MA: Endotoxin-activated microglia injure brain derived endothelial cells via NF-kappaB, JAK-STAT and JNK stress kinase pathways. J Inflamm (Lond) 2011;8:7.
[PubMed]
51.
Bresgen N, Karlhuber G, Krizbai I, Bauer H, Bauer HC, Eckl PM: Oxidative stress in cultured cerebral endothelial cells induces chromosomal aberrations, micronuclei, and apoptosis. J Neurosci Res 2003;72:327-333.
[PubMed]
52.
Carrano A, Hoozemans JJ, van der Vies SM, van Horssen J, de Vries HE, Rozemuller AJ: Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neurodegener Dis 2012;10:329-331.
[PubMed]
53.
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405:458-462.
[PubMed]
54.
Tracey KJ: The inflammatory reflex. Nature 2002;420:853-859.
[PubMed]
55.
Gallowitsch-Puerta M, Pavlov VA: Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 2007;80:2325-2329.
[PubMed]
56.
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ: Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003;421:384-388.
[PubMed]
57.
Kirkpatrick CJ, Bittinger F, Nozadze K, Wessler I: Expression and function of the non-neuronal cholinergic system in endothelial cells. Life Sci 2003;72:2111-2116.
[PubMed]
58.
Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T: Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 2006;50:540-547.
[PubMed]
59.
Wu W, Li M, Liu L, Kong H, Ding J, Hu G, Xiao M: Astrocyte activation but not neuronal impairment occurs in the hippocampus of mice after 2 weeks of D-galactose exposure. Life Sci 2011;89:355-363.
[PubMed]
60.
Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K: L-Glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion' hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflamm 2012;9:275.
[PubMed]
You do not currently have access to this content.