Aerobic organisms are constantly exposed to oxygen radicals and related oxidants. The antioxidant compounds and enzymes they have evolved remove most of the potentially damaging radicals/oxidants; however, damage to cellular proteins, lipids, nucleic acids and carbohydrates can be observed even under normal physiological conditions. Re-reduction of cellular components (direct repair) may be important for some biomolecules. In most cases studied to date, however, enzymatic degradation (by proteases, lipases, nucleases) appears to release damaged elements for excretion and conserve undamaged components for reutilization (indirect repair). In addition, the removal of damaged components appears to prevent or diminish the potential cytotoxicity of oxidized macromolecules. Several studies have reported an accumulation of oxidatively damaged cellular components with age (e.g., cataract formation, lipofuscin). Such reports are evidence that oxidant damage is one of several factors which contribute to the aging process, and provide at least partial support for the free-radical theory of aging. Studies of age-related changes in the activities, or levels of antioxidant enzymes and antioxidant compounds, however, have not provided complete understanding of the putative role of free radicals/oxidants in the aging process. In this review, we present the hypothesis that decreased activities or constitutive levels of oxidant repair enzymes may contribute to a progressive accumulation of oxidant damage with aging. Furthermore, the ability to mount an effective response to oxidative stress (induction of oxidant stress genes and proteins) may decline with age, thus predisposing older cells and organisms to oxidant damage.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.