Purpose: The goal of this study was to examine the efficacy of acceleration-based articulatory measures in characterizing the decline in speech motor control due to amyotrophic lateral sclerosis (ALS). Method: Electromagnetic articulography was used to record tongue and lip movements during the production of 20 phrases. Data were collected from 50 individuals diagnosed with ALS. Articulatory kinematic variability was measured using the spatiotemporal index of both instantaneous acceleration and speed signals. Linear regression models were used to analyze the relationship between variability measures and intelligible speaking rate (a clinical measure of disease progression). A machine learning algorithm (support vector regression, SVR) was used to assess whether acceleration or speed features (e.g., mean, median, maximum) showed better performance at predicting speech severity in patients with ALS. Results: As intelligible speaking rate declined, the variability of acceleration of tongue and lip movement patterns significantly increased (p < 0.001). The variability of speed and vertical displacement did not significantly predict speech performance measures. Additionally, based on R2 and root mean square error (RMSE) values, the SVR model was able to predict speech severity more accurately from acceleration features (R2 = 0.601, RMSE = 38.453) and displacement features (R2 = 0.218, RMSE = 52.700) than from speed features (R2 = 0.554, RMSE = 40.772). Conclusion: Results from these models highlight differences in speech motor control in participants with ALS. The variability in acceleration of tongue and lip movements increases as speech performance declines, potentially reflecting physiological deviations due to the progression of ALS. Our findings suggest that acceleration is a more sensitive indicator of speech deterioration due to ALS than displacement and speed and may contribute to improved algorithm designs for monitoring disease progression from speech signals.

1.
Kiernan
MC
,
Vucic
S
,
Cheah
BC
,
Turner
MR
,
Eisen
A
,
Hardiman
O
,
.
Amyotrophic lateral sclerosis
.
Lancet
.
2011 Mar
;
377
(
9769
):
942
55
.
2.
Green
JR
,
Yunusova
Y
,
Kuruvilla
MS
,
Wang
J
,
Pattee
GL
,
Synhorst
L
,
.
Bulbar and speech motor assessment in ALS: challenges and future directions
.
Amyotroph Lateral Scler Frontotemporal Degener
.
2013
;
14
(
7–8
):
494
500
.
3.
Meininger
V
.
Getting the diagnosis right: beyond El Escorial
.
J Neurol
.
1999
;
246 Suppl 3
:
III10
2
.
4.
Wang
J
,
Kothalkar
PV
,
Cao
B
,
Heitzman
D
.
Towards automatic detection of amyotrophic lateral sclerosis from speech acoustic and articulatory samples
. Interspeech;
2016
. p.
1195
9
.
5.
Wang
J
,
Kothalkar
PV
,
Kim
M
,
Yunusova
Y
,
Campbell
TF
,
Heitzman
D
,
.
Predicting intelligible speaking rate of individuals with amyotrophic lateral sclerosis from a small number of speech acoustic and articulatory samples
.
Workshop Speech Lang Process Assist Technol
.
2016
:
91
7
.
6.
Wisler
A
,
Teplansky
K
,
Green
J
,
Yunusova
Y
,
Campbell
T
,
Heitzman
D
,
.
Speech-based estimation of bulbar progression in amyotrophic lateral sclerosis
. Proceedings of the Eighth Workshop on Speech and Language Processing for Assistive Technologies.
Minneapolis
:
Association for Computational Linguistics
;
2019
. p.
24
31
.
7.
van Es
MA
,
Hardiman
O
,
Chio
A
,
Al-Chalabi
A
,
Pasterkamp
RJ
,
Veldink
JH
,
.
Amyotrophic lateral sclerosis
.
Lancet
.
2017
;
390
(
10107
):
2084
98
.
8.
Matharan
M
,
Mathis
S
,
Bonabaud
S
,
Carla
L
,
Soulages
A
,
Le Masson
G
.
Minimizing the diagnostic delay in amyotrophic lateral sclerosis: the role of nonneurologist practitioners
.
Neurol Res Int
.
2020 May
;
2020
:
14739811
8
.
9.
Turner
MR
,
Scaber
J
,
Goodfellow
JA
,
Lord
ME
,
Marsden
R
,
Talbot
K
.
The diagnostic pathway and prognosis in bulbar-onset amyotrophic lateral sclerosis
.
J Neurol Sci
.
2010
;
294
(
1–2
):
81
5
.
10.
Cedarbaum
JM
,
Stambler
N
,
Malta
E
,
Fuller
C
,
Hilt
D
,
Thurmond
B
,
.
The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III)
.
J Neurol Sci
.
1999 Oct
;
169
(
1–2
):
13
21
.
11.
Yorkston
KM
,
Beukelman
DR
.
Communication efficiency of dysarthric speakers as measured by sentence intelligibility and speaking rate
.
J Speech Hear Disord
.
1981
;
46
(
3
):
296
301
.
12.
Rosenfield
DB
,
Viswanath
N
,
Herbrich
KE
,
Nudelman
HB
.
Evaluation of the speech motor control system in amyotrophic lateral sclerosis
.
J Voice
.
1991 Jan
;
5
(
3
):
224
30
.
13.
Allison
KM
,
Yunusova
Y
,
Campbell
TF
,
Wang
J
,
Berry
JD
,
Green
JR
.
The diagnostic utility of patient-report and speech-language pathologists’ ratings for detecting the early onset of bulbar symptoms due to ALS
.
Amyotroph Lateral Scler Frontotemporal Degener
.
2017 Jul 3
;
18
(
5–6
):
358
66
.
14.
Yunusova
Y
,
Weismer
G
,
Westbury
JR
,
Lindstrom
MJ
.
Articulatory movements during vowels in speakers with dysarthria and healthy controls
.
J Speech Lang Hear Res
.
2008 Jun
;
51
(
3
):
596
611
. http://dx.doi.org/10.1044/1092-4388(2008/043).
15.
Langmore
SE
,
Lehman
ME
.
Physiologic deficits in the orofacial system underlying dysarthria in amyotrophic lateral sclerosis
.
J Speech Hear Res
.
1994 Feb
;
37
(
1
):
28
37
.
16.
Shellikeri
S
,
Green
JR
,
Kulkarni
M
,
Rong
P
,
Martino
R
,
Zinman
L
,
.
Speech movement measures as markers of bulbar disease in amyotrophic lateral sclerosis
.
J Speech Lang Hear Res
.
2016 Oct
;
59
(
5
):
887
99
.
17.
Mefferd
AS
,
Green
JR
,
Pattee
G
.
A novel fixed-target task to determine articulatory speed constraints in persons with amyotrophic lateral sclerosis
.
J Commun Disord
.
2012
;
45
(
1
):
35
45
.
18.
Kuruvilla-Dugdale
M
,
Chuquilin-Arista
M
.
An investigation of clear speech effects on articulatory kinematics in talkers with ALS
.
Clin Linguist Phon
.
2017 Oct 3
;
31
(
10
):
725
42
.
19.
Kuruvilla-Dugdale
M
,
Mefferd
A
.
Spatiotemporal movement variability in ALS: speaking rate effects on tongue, lower lip, and jaw motor control
.
J Commun Disord
.
2017 May
;
67
(
May
):
22
34
.
20.
Mefferd
AS
,
Pattee
GL
,
Green
JR
.
Speaking rate effects on articulatory pattern consistency in talkers with mild ALS
.
Clin Linguist Phon
.
2014 Nov 11
;
28
(
11
):
799
811
.
21.
Smith
A
,
Kleinow
J
.
Kinematic correlates of speaking rate changes in stuttering and normally fluent adults
.
J Speech Lang Hear Res
.
2000 Apr
;
43
(
2
):
521
36
.
22.
Smith
A
,
Goffman
L
,
Zelaznik
HN
,
Ying
G
,
McGillem
C
.
Spatiotemporal stability and patterning of speech movement sequences
.
Exp Brain Res
.
1995 Jun
;
104
(
3
):
493
501
.
23.
Mefferd
AS
.
Associations between tongue movement pattern consistency and formant movement pattern consistency in response to speech behavioral modifications
.
J Acoust Soc Am
.
2016
;
140
(
5
):
3728
37
.
24.
Smith
A
,
Johnson
M
,
McGillem
C
,
Goffman
L
.
On the assessment of stability and patterning of speech movements
.
J Speech Lang Hear Res
.
2000 Feb
;
43
(
1
):
277
86
.
25.
McHenry
MA
.
The effect of pacing strategies on the variability of speech movement sequences in dysarthria
.
J Speech Lang Hear Res
.
2003
;
46
(
3
):
702
10
. http://dx.doi.org/10.1044/1092-4388(2003/055).
26.
Finsterer
J
,
Fuglsang-Frederiksen
A
,
Mamoli
B
.
Needle EMG of the tongue: motor unit action potential versus peak ratio analysis in limb and bulbar onset amyotrophic lateral sclerosis
.
J Neurol Neurosurg Psychiatry
.
1997 Aug 1
;
63
(
2
):
175
80
.
27.
Cha
CH
,
Patten
BM
.
Amyotrophic lateral sclerosis: abnormalities of the tongue on magnetic resonance imaging
.
Ann Neurol
.
1989 May
;
25
(
5
):
468
72
.
28.
DePaul
R
,
Abbs
JH
,
Caligiuri
M
,
Gracco
VL
,
Brooks
BR
.
Hypoglossal, trigeminal, and facial motoneuron involvement in amyotrophic lateral sclerosis
.
Neurology
.
1988 Feb 1
;
38
(
2
):
281
3
.
29.
DePaul
R
,
Brooks
BR
.
Multiple orofacial indices in amyotrophic lateral sclerosis
.
J Speech Hear Res
.
1993 Dec
;
36
(
6
):
1158
67
.
30.
Weikamp
JG
,
Schelhaas
HJ
,
Hendriks
JCM
,
de Swart
BJM
,
Geurts
ACH
.
Prognostic value of decreased tongue strength on survival time in patients with amyotrophic lateral sclerosis
.
J Neurol
.
2012 Nov 24
;
259
(
11
):
2360
5
.
31.
Shellikeri
S
,
Yunusova
Y
,
Green
JR
,
Pattee
GL
,
Berry
JD
,
Rutkove
SB
,
.
Electrical impedance myography in the evaluation of the tongue musculature in amyotrophic lateral sclerosis
.
Muscle Nerve
.
2015 Oct
;
52
(
4
):
584
91
.
32.
Pizzorni
N
,
Ginocchio
D
,
Bianchi
F
,
Feroldi
S
,
Vedrodyova
M
,
Mora
G
,
.
Association between maximum tongue pressure and swallowing safety and efficacy in amyotrophic lateral sclerosis
.
Neurogastroenterol Motil
.
2020 Aug 26
;
32
(
8
):
e13859
11
.
33.
Newton
I
Isaac Newton’s philosophiae naturalis principia mathematica
. In:
Koyré
A
,
Cohen
IB
, editors. 3rd ed.
Cambridge, MA
:
Harvard University Press
;
1726
.
34.
Nelson
WL
,
Perkell
JS
,
Westbury
JR
.
Mandible movements during increasingly rapid articulations of single syllables: preliminary observations
.
J Acoust Soc Am
.
1984 Mar
;
75
(
3
):
945
51
.
35.
Nelson
WL
.
Physical principles for economies of skilled movements
.
Biol Cybern
.
1983 Feb
;
46
(
2
):
135
47
.
36.
Bandini
A
,
Green
JR
,
Wang
J
,
Campbell
TF
,
Zinman
L
,
Yunusova
Y
.
Kinematic features of jaw and lips distinguish symptomatic from presymptomatic stages of bulbar decline in amyotrophic lateral sclerosis
.
J Speech Lang Hear Res
.
2018 May 17
;
61
(
5
):
1118
29
.
37.
Bandini
A
,
Green
JR
,
Zinman
L
,
Yunusova
Y
.
Classification of bulbar ALS from kinematic features of the jaw and lips: towards computer-mediated assessment
. Interspeech.
ISCAISCA
;
2017
. p.
1819
23
.
38.
An
K
,
Kim
M
,
Teplansky
K
,
Green
J
,
Campbell
T
,
Yunusova
Y
,
.
Automatic early detection of amyotrophic lateral sclerosis from intelligible speech using convolutional neural networks
. Interspeech.
ISCAISCA
;
2018
. p.
1913
7
.
39.
Cummins
N
,
Scherer
S
,
Krajewski
J
,
Schnieder
S
,
Epps
J
,
Quatieri
TF
.
A review of depression and suicide risk assessment using speech analysis
.
Speech Commun
.
2015 Jul
;
71
:
10
49
.
40.
Quatieri
TF
,
Malyska
N
.
Vocal-source biomarkers for depression: a link to psychomotor activity
. Interspeech;
2012
. p.
1058
61
.
41.
Camilo Vásquez Correa
J
,
Rafael Orozdco Arroyave
J
,
David Arias-Londoño
J
,
Francisco Vargas Bonilla
J
,
Nöth
E
.
New computer aided device for real time analysis of speech of people with Parkinson’s disease
.
Revista Facultad De Ingenieria-universidad De Antioquia
.
2014
;
Vol. 72
:
87
103
.
42.
Falcone
M
,
Yadav
N
,
Poellabauer
C
,
Flynn
P
.
Using isolated vowel sounds for classification of mild traumatic brain injury
. IEEE International Conference on Acoustics, Speech and Signal Processing.
IEEE
;
2013
. p.
7577
81
.
43.
Hahm
S
,
Wang
J
.
Parkinson’s condition estimation using speech acoustic and inversely mapped articulatory data
.
Interspeech
.
2015
:
513
7
.
44.
Tsanas
A
,
Little
MA
,
McSharry
PE
,
Spielman
J
,
Ramig
LO
.
Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease
.
IEEE Trans Biomed Eng
.
2012 May
;
59
(
5
):
1264
71
.
45.
Yorkston
KM
,
Beukelman
DR
,
Hakel
M
,
Dorsey
M
.
Sentence intelligibility test for windows
.
Lincoln, NE
;
2007
.
46.
Stipancic
KL
,
Palmer
KM
,
Rowe
HP
,
Yunusova
Y
,
Berry
JD
,
Green JR. “You Say Severe, I Say Mild”: toward an empirical classification of dysarthria severity
.
J Speech Lang Hear Res
.
2021 Dec 13
;
64
(
12
):
4718
35
.
47.
Berry
JJ
.
Accuracy of the NDI wave speech research system
.
J Speech Lang Hear Res
.
2011
;
54
:
1295
301
. http://dx.doi.org/10.1044/1092-4388(2011/10-0226).
48.
Wang
J
,
Samal
A
,
Rong
P
,
Green
JR
.
An optimal set of flesh points on tongue and lips for speech-movement classification
.
J Speech Lang Hear Res
.
2016 Feb
;
59
(
1
):
15
26
.
49.
Green
JR
,
Wang
J
,
Wilson
DL
.
SMASH: a tool for articulatory data processing and analysis
.
Lyon
:
Interspeech
;
2013
. p.
1331
5
.
50.
Cortes
C
,
Vapnik
V
.
Support-vector networks
.
Mach Learn
.
1995
;
20
(
3
):
273
97
.
51.
Basak
D
,
Pal
S
,
Patranabis
DC
.
Support vector regression
.
Neural Inform Process
.
2007
;
11
(
10
):
203
24
.
52.
Witten
IH
,
Frank
E
,
Hall
MA
.
Data mining: practical machine learning tools and techniques
. 3rd ed.
Burlington, MA
:
Morgan Kaufmann
;
2011
. p.
629
.
53.
Gardner
J
,
Brooks
C
.
Statistical approaches to the model comparison task in learning analytics
.
2017
. p.
14
.
54.
Kleinow
J
,
Smith
A
,
Ramig
LO
.
Speech motor stability in IPD: effects of rate and loudness manipulations
.
J Speech Lang Hear Res
.
2001 Oct
;
44
(
5
):
1041
51
. http://dx.doi.org/10.1044/1092-4388(2001/082).
55.
Chu
SY
,
Barlow
SM
,
Lee
J
,
Wang
J
.
Effects of utterance rate and length on the spatiotemporal index in Parkinson’s disease
.
Int J Speech Lang Pathol
.
2020
;
22
(
2
):
141
51
.
56.
Wang
J
,
Kothalkar
PV
,
Kim
M
,
Bandini
A
,
Cao
B
,
Yunusova
Y
,
.
Automatic prediction of intelligible speaking rate for individuals with ALS from speech acoustic and articulatory samples
.
Int J Speech Lang Pathol
.
2018 Oct 16
;
20
(
6
):
669
79
.
57.
Eshghi
M
,
Stipancic
KL
,
Mefferd
A
,
Rong
P
,
Berry
JD
,
Yunusova
Y
,
.
Assessing oromotor capacity in ALS: the effect of a fixed-target task on lip biomechanics
.
Front Neurol
.
2019 Dec 5
;
10
:
1288
.
58.
Wisler
A
,
Goffman
L
,
Zhang
L
,
Wang
J
.
Influences of methodological decisions on assessing the spatiotemporal stability of speech movement sequences
.
J Speech Lang Hear Res
.
2022 Feb 9
;
65
(
2
):
538
54
.
59.
Green
JR
,
Moore
CA
,
Reilly
KJ
.
The sequential development of jaw and lip control for speech
.
J Speech Lang Hear Res
.
2002 Feb
;
45
(
1
):
66
79
. http://dx.doi.org/10.1044/1092-4388(2002/005).
60.
Hausdorff
JM
,
Lertratanakul
A
,
Cudkowicz
ME
,
Peterson
AL
,
Kaliton
D
,
Goldberger
AL
,
.
Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis
.
J Appl Physiol
.
2000
;
88
(
6
):
2045
53
.
61.
Jette
DU
,
Slavin
MD
,
Andres
PL
,
Munsat
TL
.
The relationship of lower-limb muscle force to walking ability in patients with amyotrophic lateral sclerosis
.
Phys Ther
.
1999 Jul 1
;
79
(
7
):
672
81
.
62.
Netsell
R
,
Daniel
B
,
Celesia
GG
.
Acceleration and weakness in parkinsonian dysarthria
.
J Speech Hear Disord
.
1975
;
40
(
2
):
170
8
.
63.
Wisler
A
,
Teplansky
K
,
Green
JR
,
Austin
SG
,
Wang
J
.
Can machines learn continuous measures of speech severity from ordinal training labels?
33rd International Conference of the Florida Artifcial Intelligence Research Society.
FLAIRS
;
2020
. p.
550
5
.
You do not currently have access to this content.