Introduction: Speckle tracking echocardiography is a non-Doppler modality allowing the semiautomated evaluation of the fetal cardiac function by tracking the speckles of the endocardial borders. Little evidence is available on the evaluation and comparison of different software for the functional assessment of the fetal heart by means of speckle tracking echocardiography. The aim of this study was to evaluate the reproducibility and agreement of two different proprietary speckle tracking software for the prenatal semiautomated assessment of the fetal cardiac function. Methods: The prospective study including non-anomalous fetuses was referred for different indications at two tertiary academic units in Italy (University of Parma) and Spain (University of Barcelona). Two-dimensional clips of the four-chamber view of the fetal heart were acquired by two dedicated operators using high-end ultrasound machines with a frame rate higher than 60 Hz. The stored clips were pseudo-anonymized and shared between the collaborating units. Functional echocardiographic analyses were independently performed using the two proprietary software (TomTec GmbH and FetalHQ®) by the same operators. Inter-software reproducibility of the endocardial global longitudinal strain (EndoGLS) and fractional area change (FAC) of the left (LV) and the right ventricles (RV) and ejection fraction (EF) of the LV were evaluated by the intraclass correlation coefficient (ICC). Results: Forty-eight fetuses were included at a median of 31+2 (21+6–40+3) gestational weeks. Moderate reproducibility was found for the functional parameters of the LV: EndoGLS (Pearson’s correlation 0.456, p < 0.01; ICC 0.446, 95% CI: 0.189–0.647, p < 0.01); EF (Pearson’s correlation 0.435, p < 0.01; ICC 0.419, 95% CI: 0.156–0.627, p < 0.01); FAC (Person’s correlation 0.484, p < 0.01; ICC 0.475, 95% CI: 0.223–0.667, p < 0.01). On the contrary, RV functional parameters showed poor reproducibility between the two software: EndoGLS (Pearson’s correlation 0.383, p = 0.01; ICC 0.377, 95% CI: 0.107–0.596, p < 0.01) and FAC (ICC 0.284, 95% CI: 0.003–0.524, p = 0.02). Conclusion: Our results demonstrate a moderate reproducibility of the speckle tracking analysis of the LV using TomTec GmbH and FetalHQ®, with poor reproducibility for RV analysis.

1.
International Society of Ultrasound in Obstetrics and Gynecology
,
Carvalho
JS
,
Allan
LD
,
Chaoui
R
,
Copel
JA
,
DeVore
GR
, et al
.
ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart
.
Ultrasound Obstet Gynecol
.
2013
;
41
(
3
):
348
59
.
2.
Allan
LD
,
Joseph
MC
,
Boyd
EG
,
Campbell
S
,
Tynan
M
.
M-mode echocardiography in the developing human fetus
.
Br Heart J
.
1982
;
47
(
6
):
573
83
.
3.
Comas
M
,
Crispi
F
.
Assessment of fetal cardiac function using tissue Doppler techniques
.
Fetal Diagn Ther
.
2012
;
32
(
1–2
):
30
8
.
4.
Germanakis
I
,
Gardiner
H
.
Assessment of fetal myocardial deformation using speckle tracking techniques
.
Fetal Diagn Ther
.
2012
;
32
(
1–2
):
39
46
.
5.
Geyer
H
,
Caracciolo
G
,
Abe
H
,
Wilansky
S
,
Carerj
S
,
Gentile
F
, et al
.
Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications
.
J Am Soc Echocardiogr
.
2010
;
23
(
4
):
351
455
.
6.
Forsey
J
,
Friedberg
MK
,
Mertens
L
.
Speckle tracking echocardiography in pediatric and congenital heart disease
.
Echocardiography
.
2013
;
30
(
4
):
447
59
.
7.
Levy
PT
,
Machefsky
A
,
Sanchez
AA
,
Patel
MD
,
Rogal
S
,
Fowler
S
, et al
.
Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis
.
J Am Soc Echocardiogr
.
2016
;
29
(
3
):
209
25.e6
.
8.
DeVore
GR
,
Gumina
DL
,
Hobbins
JC
.
Assessment of ventricular contractility in fetuses with an estimated fetal weight less than the tenth centile
.
Am J Obstet Gynecol
.
2019
;
221
(
5
):
498.e1
22
.
9.
van Oostrum
NHM
,
Derks
K
,
van der Woude
DAA
,
Clur
SA
,
Oei
SG
,
van Laar
JOEH
.
Two-dimensional speckle tracking echocardiography in fetal growth restriction: a systematic review
.
Eur J Obstet Gynecol Reprod Biol
.
2020
;
254
:
87
94
.
10.
Harbison
AL
,
Pruetz
JD
,
Ma
S
,
Sklansky
MS
,
Chmait
RH
,
DeVore
GR
.
Evaluation of cardiac function in the recipient twin in successfully treated twin-to-twin transfusion syndrome using a novel fetal speckle-tracking analysis
.
Prenat Diagn
.
2021
;
41
(
1
):
136
44
.
11.
DeVore
GR
,
Polanco
B
,
Satou
G
,
Sklansky
M
.
Two-dimensional speckle tracking of the fetal heart: a practical step-by-step approach for the fetal sonologist
.
J Ultrasound Med
.
2016
;
35
(
8
):
1765
81
.
12.
Nogué
L
,
Gómez
O
,
Izquierdo
N
,
Mula
C
,
Masoller
N
,
Martínez
JM
, et al
.
Feasibility of 4D-spatio temporal image correlation (STIC) in the comprehensive assessment of the fetal heart using FetalHQ®
.
J Clin Med
.
2022
;
11
(
5
):
1414
Published 2022 Mar 4.
13.
Bunting
KV
,
Steeds
RP
,
Slater
K
,
Rogers
JK
,
Gkoutos
GV
,
Kotecha
D
.
A practical guide to assess the reproducibility of echocardiographic measurements
.
J Am Soc Echocardiogr
.
2019
;
32
(
12
):
1505
15
.
14.
Voigt
JU
,
Pedrizzetti
G
,
Lysyansky
P
,
Marwick
TH
,
Houle
H
,
Baumann
R
, et al
.
Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging
.
J Am Soc Echocardiogr
.
2015
;
28
(
2
):
183
93
.
15.
Crispi
F
,
Sepulveda-Swatson
E
,
Cruz-Lemini
M
,
Rojas-Benavente
J
,
Garcia-Posada
R
,
Dominguez
JM
, et al
.
Feasibility and reproducibility of a standard protocol for 2D speckle tracking and tissue Doppler-based strain and strain rate analysis of the fetal heart
.
Fetal Diagn Ther
.
2012
;
32
(
1–2
):
96
108
.
16.
Enzensberger
C
,
Achterberg
F
,
Degenhardt
J
,
Wolter
A
,
Graupner
O
,
Herrmann
J
, et al
.
Feasibility and reproducibility of two-dimensional wall motion tracking (WMT) in fetal echocardiography
.
Ultrasound Int Open
.
2017
;
3
(
1
):
E26
33
.
17.
Anuwutnavin
S
,
Russameecharoen
K
,
Ruangvuthilert
P
,
Viboonchard
S
,
Sklansky
M
,
DeVore
GR
.
Reference ranges and development patterns of fetal myocardial function using speckle tracking echocardiography in healthy fetuses at 17-24 Weeks of gestation
.
Am J Perinatol
.
2023
[published online ahead of print, 2023 May 10].
18.
Huang
P
,
Deng
Y
,
Feng
L
,
Gao
Y
,
Cheng
X
,
Liu
H
.
Evaluation of fetal cardiac function in maternal gestational diabetes mellitus by speckle-tracking echocardiography
.
J Ultrasound Med
.
2023
;
42
(
1
):
81
9
.
19.
Duan
S
,
Ha
S
,
Li
S
,
Wang
Y
,
Shi
Y
,
Zhao
H
, et al
.
Evaluation of cardiac function and systolic dyssynchrony of fetuses exposed to maternal autoimmune diseases using speckle tracking echocardiography
.
Clin Rheumatol
.
2021
;
40
(
9
):
3807
15
.
20.
Murlewska
J
,
Sylwestrzak
O
,
Respondek-Liberska
M
,
Sklansky
M
,
Devore
G
.
Longitudinal surveillance of fetal heart failure using speckle tracking analysis
.
J Clin Med
.
2022
;
11
(
23
):
7102
.
21.
Huluta
I
,
Wright
A
,
Mihaela Cosma
L
,
Hamed
K
,
Nicolaides
KH
,
Charakida
M
.
Fetal Cardiac Function At Mid-Gestation And Subsequent Development Of Pre-Eclampsia
.
J Am Soc Echocardiogr
.
2023
;
S0894-7317
(
23
):
00270-5
.
22.
Domínguez-Gallardo
C
,
Ginjaume-García
N
,
Ullmo
J
,
Trilla
C
,
Medina
MC
,
Vázquez
A
, et al
.
Gestational age-adjusted reference ranges for fetal left ventricle longitudinal strain by automated cardiac motion quantification between 24 and 37 Weeks’ gestation
.
Fetal Diagn Ther
.
2022
;
49
(
7–8
):
311
20
.
23.
Manovel
A
,
Dawson
D
,
Smith
B
,
Nihoyannopoulos
P
.
Assessment of left ventricular function by different speckle-tracking software
.
Eur J Echocardiogr
.
2010
;
11
(
5
):
417
21
.
24.
Takigiku
K
,
Takeuchi
M
,
Izumi
C
,
Yuda
S
,
Sakata
K
,
Ohte
N
, et al
.
Normal range of left ventricular 2-dimensional strain: Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study
.
Circ J
.
2012
;
76
(
11
):
2623
32
.
25.
Nelson
MR
,
Hurst
RT
,
Raslan
SF
,
Cha
S
,
Wilansky
S
,
Lester
SJ
.
Echocardiographic measures of myocardial deformation by speckle-tracking technologies: the need for standardization
.
J Am Soc Echocardiogr
.
2012
;
25
(
11
):
1189
94
.
26.
Bansal
M
,
Cho
GY
,
Chan
J
,
Leano
R
,
Haluska
BA
,
Marwick
TH
.
Feasibility and accuracy of different techniques of two-dimensional speckle based strain and validation with harmonic phase magnetic resonance imaging
.
J Am Soc Echocardiogr
.
2008
;
21
(
12
):
1318
25
.
27.
DeVore
GR
,
Klas
B
,
Satou
G
,
Sklansky
M
.
Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function
.
J Ultrasound Med
.
2018
;
37
(
5
):
1129
41
.
28.
DeVore
GR
,
Klas
B
,
Satou
G
,
Sklansky
M
.
Quantitative evaluation of fetal right and left ventricular fractional area change using speckle-tracking technology
.
Ultrasound Obstet Gynecol
.
2019
;
53
(
2
):
219
28
.
29.
DeVore
GR
,
Cuneo
B
,
Klas
B
,
Satou
G
,
Sklansky
M
.
Comprehensive evaluation of fetal cardiac ventricular widths and ratios using a 24-segment speckle tracking technique
.
J Ultrasound Med
.
2019
;
38
(
4
):
1039
47
.
30.
Huntley
ES
,
Hernandez-Andrade
E
,
Soto
E
,
DeVore
G
,
Sibai
BM
.
Novel speckle tracking analysis showed excellent reproducibility for size and shape of the fetal heart and good reproducibility for strain and fractional shortening
.
Fetal Diagn Ther
.
2021
;
48
(
7
):
541
50
.
31.
Hata
T
,
Koyanagi
A
,
Yamanishi
T
,
Bouno
S
,
Takayoshi
R
,
Mostafa AboEllail
MA
, et al
.
A 24-segment fractional shortening of the fetal heart using FetalHQ
.
J Perinat Med
.
2021
;
49
(
3
):
371
6
.
32.
Hata
T
,
Koyanagi
A
,
Yamanishi
T
,
Bouno
S
,
Takayoshi
R
,
AboEllail
MAM
, et al
.
Evaluation of 24-segment sphericity index of fetal heart using FetalHQ
.
J Matern Fetal Neonatal Med
.
2022
;
35
(
23
):
4573
9
.
33.
Aye
CYL
,
Lewandowski
AJ
,
Ohuma
EO
,
Upton
R
,
Packham
A
,
Kenworthy
Y
, et al
.
Two-dimensional echocardiography estimates of fetal ventricular mass throughout gestation
.
Fetal Diagn Ther
.
2018
;
44
(
1
):
18
27
.
34.
Köster
HA
,
Hammer
K
,
Braun
J
,
Oelmeier de Murcia
K
,
Möllers
M
,
Klockenbusch
W
, et al
.
Comparison of strain and dyssynchrony measurements in fetal two-dimensional speckle tracking echocardiography using Philips and TomTec
.
J Perinat Med
.
2020
;
48
(
3
):
266
73
.
35.
Meister
M
,
Axt-Fliedner
R
,
Graupner
O
,
Kuhn
V
,
Wolter
A
,
Götte
M
, et al
.
Atrial and ventricular deformation analysis in normal fetal hearts using two-dimensional speckle tracking echocardiography
.
Fetal Diagn Ther
.
2020
;
47
(
9
):
699
710
.
36.
Farsalinos
KE
,
Daraban
AM
,
Ünlü
S
,
Thomas
JD
,
Badano
LP
,
Voigt
JU
.
Head-to-Head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study
.
J Am Soc Echocardiogr
.
2015
;
28
(
10
):
1171
e2
.
37.
van Everdingen
WM
,
Maass
AH
,
Vernooy
K
,
Meine
M
,
Allaart
CP
,
De Lange
FJ
, et al
.
Comparison of strain parameters in dyssynchronous heart failure between speckle tracking echocardiography vendor systems
.
Cardiovasc Ultrasound
.
2017
;
15
(
1
):
25
Published 2017 Oct 18.
38.
Unterscheider
J
,
O’Donoghue
K
,
Daly
S
,
Geary
MP
,
Kennelly
MM
,
McAuliffe
FM
, et al
.
Fetal growth restriction and the risk of perinatal mortality-case studies from the multicentre PORTO study
.
BMC Pregnancy Childbirth
.
2014
;
14
:
63
Published 2014 Feb 11.
39.
Oros
D
,
Figueras
F
,
Cruz-Martinez
R
,
Meler
E
,
Munmany
M
,
Gratacos
E
.
Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses
.
Ultrasound Obstet Gynecol
.
2011
;
37
(
2
):
191
5
.
40.
Figueras
F
,
Gratacós
E
.
Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol
.
Fetal Diagn Ther
.
2014
;
36
(
2
):
86
98
.
41.
Gordijn
SJ
,
Beune
IM
,
Thilaganathan
B
,
Papageorghiou
A
,
Baschat
AA
,
Baker
PN
, et al
.
Consensus definition of fetal growth restriction: a Delphi procedure
.
Ultrasound Obstet Gynecol
.
2016
;
48
(
3
):
333
9
.
42.
Lees
CC
,
Stampalija
T
,
Baschat
A
,
da Silva Costa
F
,
Ferrazzi
E
,
Figueras
F
, et al
.
ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction
.
Ultrasound Obstet Gynecol
.
2020
;
56
(
2
):
298
312
.
43.
Melamed
N
,
Baschat
A
,
Yinon
Y
,
Athanasiadis
A
,
Mecacci
F
,
Figueras
F
, et al
.
FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction
.
Int J Gynaecol Obstet
.
2021
;
152
(
Suppl 1
):
3
57
.
44.
Baschat
AA
,
Galan
HL
,
Lee
W
,
DeVore
GR
,
Mari
G
,
Hobbins
J
, et al
.
The role of the fetal biophysical profile in the management of fetal growth restriction
.
Am J Obstet Gynecol
.
2022
;
226
(
4
):
475
86
.
45.
Lees
CC
,
Romero
R
,
Stampalija
T
,
Dall’Asta
A
,
DeVore
GA
,
Prefumo
F
, et al
.
Clinical Opinion: the diagnosis and management of suspected fetal growth restriction: an evidence-based approach
.
Am J Obstet Gynecol
.
2022
;
226
(
3
):
366
78
.
46.
Stepan
H
,
Galindo
A
,
Hund
M
,
Schlembach
D
,
Sillman
J
,
Surbek
D
, et al
.
Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction
.
Ultrasound Obstet Gynecol
.
2023
;
61
(
2
):
168
80
.
47.
Salomon
LJ
,
Bernard
JP
,
Duyme
M
,
Doris
B
,
Mas
N
,
Ville
Y
.
Feasibility and reproducibility of an image-scoring method for quality control of fetal biometry in the second trimester
.
Ultrasound Obstet Gynecol
.
2006
;
27
(
1
):
34
40
.
48.
Perni
SC
,
Chervenak
FA
,
Kalish
RB
,
Magherini-Rothe
S
,
Predanic
M
,
Streltzoff
J
, et al
.
Intraobserver and interobserver reproducibility of fetal biometry
.
Ultrasound Obstet Gynecol
.
2004
;
24
(
6
):
654
8
.
49.
Rosati
P
,
Buongiorno
S
,
Salvi
S
,
Guariglia
L
,
Lanzone
A
,
Morales-Roselló
J
.
Reproducibility of the fetal cerebral vessels assessment in full and late term pregnancies
.
J Matern Fetal Neonatal Med
.
2020
;
33
(
13
):
2159
65
.
50.
Segev
M
,
Weissmann-Brenner
A
,
Weissbach
T
,
Kassif
E
,
Weisz
B
.
Intra-observer variability of Doppler measurements in umbilical artery (UA) and middle cerebral artery (MCA) in uncomplicated term pregnancies
.
J Matern Fetal Neonatal Med
.
2022
;
35
(
25
):
5653
8
.
51.
Guirado
L
,
Crispi
F
,
Soveral
I
,
Valenzuela-Alcaraz
B
,
Rodriguez-López
M
,
García-Otero
L
, et al
.
Nomograms of fetal right ventricular fractional area change by 2D echocardiography
.
Fetal Diagn Ther
.
2020
;
47
(
5
):
399
410
.
You do not currently have access to this content.