Introduction: Three-dimensional fractional moving blood volume (3D-FMBV) may provide superior noninvasive measurement of feto-placental perfusion compared to current methods. This study investigated the feasibility and repeatability of producing 3D-FMBV measurements of the placenta, fetal liver, kidney, and brain in a single ultrasound consultation. Methods: The placenta, fetal liver, kidney, and brain were scanned in triplicate using 3D power Doppler ultrasound (3D-PDU) in 48 women ≥22 weeks of gestation with healthy fetuses. 3D-FMBV was calculated by two analyzers. Feasibility was assessed as the percentage of cases where 3D-FMBV could be evaluated; repeatability (intraobserver and interobserver) using two-way mixed measure intraclass correlation coefficients (ICCs). Results: 3D-FMBV was calculated for 100% of scanned organs. Intraobserver ICCs (95% CI) were good to excellent; 0.93 (0.88–0.96) and 0.87 (0.78–0.92) for placenta, 0.95 (0.92–0.97) and 0.98 (0.96–0.99) for fetal liver, 0.96 (0.94–0.98) and 0.91 (0.85–0.95) for fetal kidney, and 0.98 (0.97–0.99) and 0.97 (0.95–0.98) for fetal brain. Interobserver ICCs (95% CI) were 0.50 (0.08–0.73), 0.92 (0.85–0.96), 0.89 (0.78–0.94), and 0.71 (0.46–0.85) for placenta, fetal liver, kidney, and brain. Conclusion: Feto-placental perfusion assessment with 3D-FMBV is highly reliable in healthy pregnancies ≥22 weeks of gestation and can be feasibly calculated in four feto-placental vascular beds in a single ultrasound consultation.

Throughout pregnancy the placenta provides the fetus with nutrients and oxygen. If blood flow to the fetus is impaired (i.e., in placental disease), the fetus adapts by directing more blood to its brain and less to peripheral organs, called “brain-sparing.” This has consequences including impaired growth, stillbirth, and chronic adulthood disease. Brain-sparing is currently detected by measuring how pulsatile blood flow is in the fetal brain and placental vessels. However, in many cases, brain-sparing is detected too late for interventions to be implemented, or not at all. Three-dimensional fractional moving blood volume (3D-FMBV) is a new noninvasive technique that may be able to earlier detect brain-sparing by measuring blood flow in whole fetal organs. If successful, this technique could be used to define normal blood flow ranges in different organs throughout pregnancy, allowing for early detection, intervention, and optimization of fetal outcomes. To do this, it must first be practical to take 3D-FMBV measurements in a single ultrasound consultation (and not be too time intensive) and produce reliable measurements between patients. Our study found that it is practical to measure blood flow in four organs; placenta, fetal liver, kidney, and brain, in a single ultrasound consult, taking a median 10 min and 12 s for scanning and 41 min and 59 s for offline analysis. We were able to calculate 3D-FMBV for all organs scanned. Following our proposed protocol for scanning and analysis, 3D-FMBV measurements can be reliably calculated to a good to excellent degree by the same observer and between observers.

1.
Huppertz
B
,
Kingdom
JCP
.
The placenta and fetal membranes
. In:
Edmonds
K
,
Lees
C
,
Bourne
T
, editors.
Dewhurst’s textbook of obstetrics & gynaecology
.
John Wiley and Sons
;
2018
. p.
18
28
.
2.
Wang
Y
,
Zhao
S
.
Vascular biology of the placenta
. In:
Granger
N
,
Granger
JP
, editors.
Integrated systems physiology: from molecules to function to disease
.
San Rafael
:
Morgan & Claypool Life Sciences
;
2010
.
3.
Burton
GJ
,
Fowden
AL
.
The placenta: a multifaceted, transient organ
.
Philos Trans R Soc Lond B Biol Sci
.
2015
;
370
(
1663
):
20140066
.
4.
Acharya
G
,
Sonesson
SE
,
Flo
K
,
Räsänen
J
,
Odibo
A
.
Hemodynamic aspects of normal human feto-placental (umbilical) circulation
.
Acta Obstet Gynecol Scand
.
2016
;
95
(
6
):
672
82
.
5.
Giussani
DA
.
The fetal brain sparing response to hypoxia: physiological mechanisms
.
J Physiol
.
2016
;
594
(
5
):
1215
30
.
6.
Turner
JM
,
Mitchell
MD
,
Kumar
SS
.
The physiology of intrapartum fetal compromise at term
.
Am J Obstet Gynecol
.
2020
;
222
(
1
):
17
26
.
7.
Chauhan
SP
,
Magann
EF
,
Scott
JR
,
Scardo
JA
,
Hendrix
NW
,
Martin
JN
Jr
.
Cesarean delivery for fetal distress: rate and risk factors
.
Obstet Gynecol Surv
.
2003
;
58
(
5
):
337
50
.
8.
Cahill
LS
,
Hoggarth
J
,
Lerch
JP
,
Seed
M
,
Macgowan
CK
,
Sled
JG
.
Fetal brain sparing in a mouse model of chronic maternal hypoxia
.
J Cereb Blood Flow Metab
.
2019
;
39
(
6
):
1172
84
.
9.
Giussani
DA
,
Salinas
CE
,
Villena
M
,
Blanco
CE
.
The role of oxygen in prenatal growth: studies in the chick embryo
.
J Physiol
.
2007
;
585
(
Pt 3
):
911
7
.
10.
Leitner
Y
,
Fattal-Valevski
A
,
Geva
R
,
Eshel
R
,
Toledano-Alhadef
H
,
Rotstein
M
, et al
.
Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study
.
J Child Neurol
.
2007
;
22
(
5
):
580
7
.
11.
Fischi-Gomez
E
,
Vasung
L
,
Meskaldji
DE
,
Lazeyras
F
,
Borradori-Tolsa
C
,
Hagmann
P
, et al
.
Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition
.
Cereb Cortex
.
2015
;
25
(
9
):
2793
805
.
12.
Barker
DJ
.
The origins of the developmental origins theory
.
J Intern Med
.
2007
;
261
(
5
):
412
7
.
13.
Skilton
MR
,
Evans
N
,
Griffiths
KA
,
Harmer
JA
,
Celermajer
DS
.
Aortic wall thickness in newborns with intrauterine growth restriction
.
Lancet
.
2005
;
365
(
9469
):
1484
6
.
14.
Mestan
KK
,
Check
J
,
Minturn
L
,
Yallapragada
S
,
Farrow
KN
,
Liu
X
, et al
.
Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension
.
Placenta
.
2014
;
35
(
8
):
570
4
.
15.
Gardosi
J
,
Madurasinghe
V
,
Williams
M
,
Malik
A
,
Francis
A
.
Maternal and fetal risk factors for stillbirth: population based study
.
BMJ
.
2013
;
346
:
f108
.
16.
Cohen
E
,
Baerts
W
,
van Bel
F
.
Brain-sparing in intrauterine growth restriction: considerations for the neonatologist
.
Neonatology
.
2015
;
108
(
4
):
269
76
.
17.
Acharya
G
,
Wilsgaard
T
,
Berntsen
GK
,
Maltau
JM
,
Kiserud
T
.
Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy
.
Am J Obstet Gynecol
.
2005
;
192
(
3
):
937
44
.
18.
Lees
CC
,
Stampalija
T
,
Baschat
A
,
da Silva Costa
F
,
Ferrazzi
E
,
Figueras
F
, et al
.
ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction
.
Ultrasound Obstet Gynecol
.
2020
;
56
(
2
):
298
312
.
19.
Khalil
A
,
Morales-Rosello
J
,
Townsend
R
,
Morlando
M
,
Papageorghiou
A
,
Bhide
A
, et al
.
Value of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and perinatal loss
.
Ultrasound Obstet Gynecol
.
2016
;
47
(
1
):
74
80
.
20.
Turan
OM
,
Turan
S
,
Gungor
S
,
Berg
C
,
Moyano
D
,
Gembruch
U
, et al
.
Progression of Doppler abnormalities in intrauterine growth restriction
.
Ultrasound Obstet Gynecol
.
2008
;
32
(
2
):
160
7
.
21.
Cruz-Martinez
R
,
Figueras
F
,
Hernandez-Andrade
E
,
Puerto
B
,
Gratacós
E
.
Longitudinal brain perfusion changes in near-term small-for-gestational-age fetuses as measured by spectral Doppler indices or by fractional moving blood volume
.
Am J Obstet Gynecol
.
2010
;
203
(
1
):
42 e1
426
.
22.
Hernandez-Andrade
E
,
Figueroa-Diesel
H
,
Jansson
T
,
Rangel-Nava
H
,
Gratacós
E
.
Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses
.
Ultrasound Obstet Gynecol
.
2008
;
32
(
1
):
71
6
.
23.
Stevenson
GN
,
Collins
SL
,
Welsh
AW
,
Impey
LW
,
Noble
JA
.
A technique for the estimation of fractional moving blood volume by using three-dimensional power Doppler US
.
Radiology
.
2015
;
274
(
1
):
230
7
.
24.
Rubin
JM
,
Adler
RS
,
Fowlkes
JB
,
Spratt
S
,
Pallister
JE
,
Chen
JF
, et al
.
Fractional moving blood volume: estimation with power Doppler US
.
Radiology
.
1995
;
197
(
1
):
183
90
.
25.
Rubin
JM
,
Bude
RO
,
Fowlkes
JB
,
Spratt
RS
,
Carson
PL
,
Adler
RS
.
Normalizing fractional moving blood volume estimates with power Doppler US: defining a stable intravascular point with the cumulative power distribution function
.
Radiology
.
1997
;
205
(
3
):
757
65
.
26.
Welsh
AW
,
Fowlkes
JB
,
Pinter
SZ
,
Ives
KA
,
Owens
GE
,
Rubin
JM
, et al
.
Three-dimensional US fractional moving blood volume: validation of renal perfusion quantification
.
Radiology
.
2019
;
293
(
2
):
460
8
.
27.
Mercé
LT
,
Barco
MJ
,
Bau
S
.
Reproducibility of the study of placental vascularization by three-dimensional power Doppler
.
J Perinat Med
.
2004
;
32
(
3
):
228
33
.
28.
Pairleitner
H
,
Steiner
H
,
Hasenoehrl
G
,
Staudach
A
.
Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization
.
Ultrasound Obstet Gynecol
.
1999
;
14
(
2
):
139
43
.
29.
Collins
S
,
Stevenson
G
,
Noble
J
,
Impey
L
,
Welsh
AW
.
Influence of power Doppler gain setting on Virtual Organ Computer-aided AnaLysis indices in vivo: an use of the individual sub-noise gain level optimize information
.
Ultrasound Obstet Gynecol
.
2012
;
40
(
1
):
75
80
.
30.
Welsh
AW
,
Collins
S
,
Stevenson
G
,
Noble
JA
,
Impey
L
.
Inapplicability of fractional moving blood volume technique to standardize Virtual Organ Computer-aided AnaLysis indices for quantified three-dimensional power Doppler
.
Ultrasound Obstet Gynecol
.
2012
;
40
(
6
):
688
92
.
31.
Collins
SL
,
Welsh
AW
,
Impey
L
,
Noble
JA
,
Stevenson
GN
.
3D fractional moving blood volume (3D-FMBV) demonstrates decreased first trimester placental vascularity in pre-eclampsia but not the term, small for gestation age baby
.
PLoS One
.
2017
;
12
(
6
):
e0178675
.
32.
Yadav
BK
,
Hernandez-Andrade
E
,
Krishnamurthy
U
,
Buch
S
,
Jella
P
,
Trifan
A
, et al
.
Dual-imaging modality approach to evaluate cerebral hemodynamics in growth-restricted fetuses: oxygenation and perfusion
.
Fetal Diagn Ther
.
2020
;
47
(
2
):
145
55
.
33.
Gomes de Melo Tavares Ferreira
AE
,
Pathirana
S
,
Stevenson
G
,
Chang
M
,
Alphonse
J
,
Gu
B
, et al
.
OP04.05: compensation for ultrasound (US) machine settings: can a ‘sub-noise gain’ (SNG) preserve the appearance of power Doppler (PD) and computed indices
.
Ultrasound Obstet Gynecol
.
2018
;
52
:
76
.
34.
Cheung
W
,
Stevenson
GN
,
de Melo Tavares Ferreira
AEG
,
Alphonse
J
,
Welsh
AW
.
Feasibility of image registration and fusion for evaluation of structure and perfusion of the entire second trimester placenta by three-dimensional power Doppler ultrasound
.
Placenta
.
2020
;
94
:
13
9
.
35.
Hernandez-Andrade
E
,
Jansson
T
,
Figueroa-Diesel
H
,
Rangel-Nava
H
,
Acosta-Rojas
R
,
Gratacós
E
.
Evaluation of fetal regional cerebral blood perfusion using power Doppler ultrasound and the estimation of fractional moving blood volume
.
Ultrasound Obstet Gynecol
.
2007
;
29
(
5
):
556
61
.
36.
Figueroa-Diesel
H
,
Hernandez-Andrade
E
,
Acosta-Rojas
R
,
Cabero
L
,
Gratacós
E
.
Doppler changes in the main fetal brain arteries at different stages of hemodynamic adaptation in severe intrauterine growth restriction
.
Ultrasound Obstet Gynecol
.
2007
;
30
(
3
):
297
302
.
37.
Robinson
DE
.
Digital reconstruction and display of compound scan ultrasound images
.
IEEE Trans Sonics Ultrason
.
1984
;
31
(
4
):
396
406
.
38.
Robinson
DE
,
Knight
PC
.
Interpolation scan conversion in pulse-echo ultrasound
.
Ultrason Imaging
.
1982
;
4
(
4
):
297
310
.
39.
Johnson
HJ
,
McCormick
MM
,
Ibanez
L
.
The ITK software guide
.
2021
.
40.
Van Der Walt
S
,
Colbert
SC
,
Varoquaux
G
.
The NumPy array: a structure for efficient numerical computation
.
Comput Sci Eng
.
2007
;
9
(
03
):
90
5
.
41.
Hunter
JD
.
Matplotlib: a 2D graphics environment
.
Comput Sci Eng
.
2007
;
9
(
3
):
90
5
.
42.
Lai
PK
,
Wang
YA
,
Welsh
AW
.
Reproducibility of regional placental vascularity/perfusion measurement using 3D power Doppler
.
Ultrasound Obstet Gynecol
.
2010
;
36
(
2
):
202
9
.
43.
Koo
TK
,
Li
MY
.
A guideline of selecting and reporting intraclass correlation coefficients for reliability research
.
J Chiropr Med
.
2016
;
15
(
2
):
155
63
.
44.
Issa
E
,
Stevenson
GN
,
Gomes De Melo Tavares Ferreira
AE
,
Chang
MHY
,
Alphonse
J
,
Welsh
AW
.
The influence of hyperoxygenation on fetal brain vascularity measured using 3D power Doppler ultrasound and the index “fractional moving blood volume”
.
Fetal Diagn Ther
.
2021
;
48
(
9
):
651
9
.
45.
Pasquini
L
,
Marchi
L
,
Gaini
C
,
Franchi
C
,
Mecacci
F
,
Bilardo
CM
.
Intra- and interobserver reproducibility of third trimester middle cerebral artery pulsatility index measurement: a prospective cross-sectional study
.
Fetal Diagn Ther
.
2020
;
47
(
3
):
214
9
.
46.
Figueira
CO
,
Surita
FG
,
Dertkigil
MS
,
Pereira
SL
,
Bennini
JR
Jr
,
Morais
SS
, et al
.
Fetal hemodynamic parameters in low risk pregnancies: Doppler velocimetry of uterine, umbilical, and middle cerebral artery
.
Sci World J
.
2016
;
2016
:
1693704
.
47.
Bruin
CM
,
Ganzevoort
W
,
Schuit
E
,
Mensing van Charante
NA
,
Wolf
H
.
Inter- and intra-observer variability in fetal ductus venosus blood flow measurements in high-risk fetuses at 26-32 weeks
.
Eur J Obstet Gynecol Reprod Biol
.
2019
;
243
:
67
71
.
48.
Marchi
L
,
Gaini
C
,
Franchi
C
,
Mecacci
F
,
Bilardo
C
,
Pasquini
L
.
Intraobserver and interobserver reproducibility of third trimester uterine artery pulsatility index
.
Prenat Diagn
.
2017
;
37
(
12
):
1198
202
.
49.
Cruz-Martinez
R
,
Cruz Lemini
MC
,
Figueras
F
,
Meler
E
,
Corpus-Lopez
E
,
Hernandez-Andrade
E
, et al
.
P24.02: reproducibility of fetal renal blood perfusion as measured by fractional moving blood volume using power Doppler ultrasound
.
Ultrasound Obstet Gyne
.
2010
;
36
(
S1
):
259
.
50.
Hernandez-Andrade
E
,
Thuring-Jonsson
A
,
Jansson
T
,
Lingman
G
,
Marsal
K
.
Fractional moving blood volume estimation in the fetal lung using power Doppler ultrasound: a reproducibility study
.
Ultrasound Obstet Gynecol
.
2004
;
23
(
4
):
369
73
.
51.
Welsh
AW
.
Quantification of power Doppler and the index “fractional moving blood volum”’ (FMBV)
.
Ultrasound Obstet Gynecol
.
2004
;
23
(
4
):
323
6
.
52.
Cruz-Martinez
R
,
Figueras
F
,
Hernandez-Andrade
E
,
Benavides-Serralde
A
,
Gratacos
E
.
Normal reference ranges of fetal regional cerebral blood perfusion as measured by fractional moving blood volume
.
Ultrasound Obstet Gynecol
.
2011
;
37
(
2
):
196
201
.
You do not currently have access to this content.