Introduction: Growth-restricted fetuses may have changes in their neuroanatomical structures that can be detected in prenatal imaging. We aim to compare corpus callosal length (CCL) and cerebellar vermian height (CVH) measurements between fetal growth restriction (FGR) and control fetuses and to correlate them with cerebral Doppler velocimetry in growth-restricted fetuses. Methods: This was a prospective cohort of FGR after 20 weeks of gestation with ultrasound measurements of CCL and CVH. Control cohort was assembled from fetuses without FGR who had growth ultrasound after 20 weeks of gestation. We compared differences of CCL or CVH between FGR and controls. We also tested for the correlations of CCL and CVH with middle cerebral artery (MCA) pulsatility index (PI) and vertebral artery (VA) PI in the FGR group. CCL and CVH measurements were adjusted by head circumference (HC). Results: CCL and CVH were obtained in 68 and 55 fetuses, respectively. CCL/HC was smaller in FGR fetuses when compared to control fetuses (difference = 0.03, 95% CI: [0.02, 0.04], p < 0.001). CVH/HC was larger in FGR fetuses compared to NG fetuses (difference = 0.1, 95% CI: [−0.01, 0.02], p = < 0.001). VA PI multiples of the median were inversely correlated with CVH/HC (rho = −0.53, p = 0.007), while CCL/HC was not correlated with VA PI. Neither CCL/HC nor CVH/HC was correlated with MCA PI. Conclusions: CCL/HC and CVH/HC measurements show differences in growth-restricted fetuses compared to a control cohort. We also found an inverse relationship between VA PI and CVH/HC. The potential use of neurosonography assessment in FGR assessment requires continued explorations.

In this study, we compared ultrasound measurements of several brain structures in fetuses with reduced or normal growth. We also evaluated the correlation of the size/length of these brain structures to blood flow of several blood vessels to the brain. We found that measurements of the small brain (CVH) are larger in pregnancies with growth problems. We also found that the blood flow of the vessel in the back side of the brain (vertebral artery [VA] Doppler) is inversely correlated with the CVH. These findings add to the literature on the use of ultrasound specifically to assess brain structures in pregnancies that are affected by growth problems. Deeper understanding of these associations may help establish which pregnancies with growth problems may need the most help later in life.

1.
Streimish
IG
,
Ehrenkranz
RA
,
Allred
EN
,
O’Shea
TM
,
Kuban
KC
,
Paneth
N
, et al
.
Birth weight- and fetal weight-growth restriction: impact on neurodevelopment
.
Early Hum Dev
.
2012
;
88
(
9
):
765
71
. doi: .
2.
Baschat
AA
.
Neurodevelopment after fetal growth restriction
.
Fetal Diagn Ther
.
2014
;
36
(
2
):
136
42
. doi: .
3.
Lees
CC
,
Marlow
N
,
van Wassenaer-Leemhuis
A
,
Arabin
B
,
Bilardo
CM
,
Brezinka
C
, et al
.
2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial
.
Lancet
.
2015
;
385
(
9983
):
2162
72
. doi: .
4.
Levine
TA
,
Grunau
RE
,
McAuliffe
FM
,
Pinnamaneni
R
,
Foran
A
,
Alderdice
FA
.
Early childhood neurodevelopment after intrauterine growth restriction: a systematic review
.
Pediatrics
.
2015
;
135
(
1
):
126
41
. doi: .
5.
Murray
E
,
Fernandes
M
,
Fazel
M
,
Kennedy
SH
,
Villar
J
,
Stein
A
.
Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review
.
BJOG
.
2015
;
122
(
8
):
1062
72
. doi: .
6.
Miller
SL
,
Huppi
PS
,
Mallard
C
.
The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome
.
J Physiol
.
2016
;
594
(
4
):
807
23
. doi: .
7.
Korzeniewski
SJ
,
Allred
EN
,
Joseph
RM
,
Heeren
T
,
Kuban
KC
,
O’Shea
TM
, et al
.
Neurodevelopment at age 10 years of children born< 28 weeks with fetal growth restriction
.
Pediatrics
.
2017
;
140
(
5
):
e20170697
. doi: .
8.
Steller
JG
,
Gumina
D
,
Driver
C
,
Peek
E
,
Galan
HL
,
Reeves
S
, et al
.
Patterns of brain sparing in a fetal growth restriction cohort
.
J Clin Med
.
2022
;
11
(
15
):
4480
. doi: .
9.
Tolsa
CB
,
Zimine
S
,
Warfield
SK
,
Freschi
M
,
Sancho Rossignol
A
,
Lazeyras
F
, et al
.
Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction
.
Pediatr Res
.
2004
;
56
(
1
):
132
8
. doi: .
10.
Padilla
N
,
Falcón
C
,
Sanz-Cortés
M
,
Figueras
F
,
Bargallo
N
,
Crispi
F
, et al
.
Differential effects of intrauterine growth restriction on brain structure and development in preterm infants: a magnetic resonance imaging study
.
Brain Res
.
2011
;
1382
:
98
108
. doi: .
11.
Egaña-Ugrinovic
G
,
Sanz-Cortés
M
,
Couve-Pérez
C
,
Figueras
F
,
Gratacós
E
.
Corpus callosum differences assessed by fetal MRI in late-onset intrauterine growth restriction and its association with neurobehavior
.
Prenat Diagn
.
2014
;
34
(
9
):
843
9
. doi: .
12.
Starcevic
M
,
Predojevic
M
,
Butorac
D
,
Tumbri
J
,
Konjevoda
P
,
Kadic
AS
.
Early functional and morphological brain disturbances in late-onset intrauterine growth restriction
.
Early Hum Dev
.
2016
;
93
:
33
8
. doi: .
13.
Tolcos
M
,
Harding
R
,
Loeliger
M
,
Breen
S
,
Cock
M
,
Duncan
J
, et al
.
The fetal brainstem is relatively spared from injury following intrauterine hypoxemia
.
Brain Res Dev Brain Res
.
2003
;
143
(
1
):
73
81
. doi: .
14.
Hernandez-Andrade
E
,
Figueroa-Diesel
H
,
Jansson
T
,
Rangel-Nava
H
,
Gratacos
E
.
Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses
.
Ultrasound Obstet Gynecol
.
2008
;
32
(
1
):
71
6
. doi: .
15.
Purves
D
,
Augustine
GJ
,
Fitzpatrick
D
,
Katz
LC
,
LaMantia
AS
,
McNamara
JO
, et al
.
The blood supply of the brain and spinal cord. Neuroscience
. 2nd ed.
Sinauer Associates
;
2001
.
16.
Gordijn
SJ
,
Beune
IM
,
Thilaganathan
B
,
Papageorghiou
A
,
Baschat
AA
,
Baker
PN
, et al
.
Consensus definition of fetal growth restriction: a Delphi procedure
.
Ultrasound Obstet Gynecol
.
2016
;
48
(
3
):
333
9
. doi: .
17.
Wu
PM
,
Shih
HI
,
Yu
WH
,
Chen
LW
,
Wang
LC
,
Huang
CC
, et al
.
Corpus callosum and cerebellar vermis size in very preterm infants: relationship to long-term neurodevelopmental outcome
.
Pediatr Neonatol
.
2019
;
60
(
2
):
178
85
. doi: .
18.
Le Strange
E
,
Saeed
N
,
Cowan
FM
,
Edwards
AD
,
Rutherford
MA
.
MR imaging quantification of cerebellar growth following hypoxic-ischemic injury to the neonatal brain
.
AJNR Am J Neuroradiol
.
2004
;
25
(
3
):
463
8
.
19.
Berti
V
,
Mosconi
L
,
Pupi
A
.
Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging
.
Pet Clin
.
2014
;
9
(
2
):
129
40
. doi: .
20.
Jandeaux
C
,
Kuchcinski
G
,
Ternynck
C
,
Riquet
A
,
Leclerc
X
,
Pruvo
JP
, et al
.
Biometry of the cerebellar vermis and brain stem in children: MR imaging reference data from measurements in 718 children
.
AJNR Am J Neuroradiol
.
2019
;
40
(
11
):
1835
41
. doi: .
21.
Zheng
W
,
Zhang
X
,
Feng
Y
,
Liu
B
,
Zhu
J
,
Zou
Y
, et al
.
Association of corpus callosum development with fetal growth restriction and maternal preeclampsia or gestational hypertension
.
JAMA Netw Open
.
2022
;
5
(
8
):
E2226696
E96
. doi: .
22.
Hadlock
FP
,
Harrist
R
,
Sharman
RS
,
Deter
RL
,
Park
SK
.
Estimation of fetal weight with the use of head, body, and femur measurements–a prospective study
.
Am J Obstet Gynecol
.
1985
;
151
(
3
):
333
7
. doi: .
23.
American College of Obstetricians and Gynecologists
.
Committee opinion No 700: methods for estimating the due date
.
Obstet Gynecol
.
2017
;
129
(
5
):
e150
4
.
24.
Acharya
G
,
Wilsgaard
T
,
Berntsen
GKR
,
Maltau
JM
,
Kiserud
T
.
Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy
.
Am J Obstet Gynecol
.
2005
;
192
(
3
):
937
44
. doi: .
25.
Ebbing
C
,
Rasmussen
S
,
Kiserud
T
.
Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements
.
Ultrasound Obstet Gynecol
.
2007
;
30
(
3
):
287
96
. doi: .
26.
Morales-Roselló
J
,
Khalil
A
,
Morlando
M
,
Hervás-Marín
D
,
Perales-Marín
A
.
Doppler reference values of the fetal vertebral and middle cerebral arteries, at 19-41 weeks gestation
.
J Matern Fetal Neonatal Med
.
2015
;
28
(
3
):
338
43
. doi: .
27.
Chang
CH
,
Chang
FM
,
Yu
CH
,
Ko
HC
,
Chen
HY
.
Three-dimensional ultrasound in the assessment of fetal cerebellar transverse and antero-posterior diameters
.
Ultrasound Med Biol
.
2000
;
26
(
2
):
175
82
. doi: .
28.
Vinals
F
,
Munoz
M
,
Naveas
R
,
Shalper
J
,
Giuliano
A
.
The fetal cerebellar vermis: anatomy and biometric assessment using volume contrast imaging in the C-plane (VCI-C)
.
Ultrasound Obstet Gynecol
.
2005
;
26
(
6
):
622
7
. doi: .
29.
Pashaj
S
,
Merz
E
,
Wellek
S
.
Biometry of the fetal corpus callosum by three-dimensional ultrasound
.
Ultrasound Obstet Gynecol
.
2013
;
42
(
6
):
691
8
. doi: .
30.
GraphPad
Software
.
GraphPad Prism
.
San Diego, CA
:
GraphPad Software
;
2020
.
31.
IBM
Corporation
.
IBM SPSS statistics for Macintosh
.
Armonk, NY
:
IBM Corp
;
2021
.
32.
R Core Team
.
R: A language and environment for statistical computing
.
Vienna, Austria
:
R Foundation for Statistical Computing
;
2022
.
33.
R Core Team
.
RStudio: integrated development environment for R
.
Boston, MA
:
RStudio, PBC
;
2022
.
34.
Businelli
C
,
de Wit
C
,
Visser
GHA
,
Pistorius
LR
.
Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction
.
J Matern Fetal Neonatal Med
.
2015
;
28
(
11
):
1302
7
. doi: .
35.
Welling
MS
,
Husen
SC
,
Go
A
,
Groenenberg
IAL
,
Willemsen
SP
,
Bijma
HH
, et al
.
Growth trajectories of the human fetal brain in healthy and complicated pregnancies and associations with neurodevelopmental outcome in the early life course
.
Early Hum Dev
.
2020
;
151
:
105224
. doi: .
36.
Paules
C
,
Miranda
J
,
Policiano
C
,
Crovetto
F
,
Youssef
L
,
Hahner
N
, et al
.
Fetal neurosonography detects differences in cortical development and corpus callosum in late-onset small fetuses
.
Ultrasound Obstet Gynecol
.
2021
;
58
(
1
):
42
7
. doi: .
37.
Goldstein
I
,
Tamir
A
,
Reece
AE
,
Weiner
Z
.
Corpus callosum growth in normal and growth-restricted fetuses
.
Prenat Diagn
.
2011
;
31
(
12
):
1115
9
. doi: .
38.
Pharande
P
,
Krishnamurthy
M
,
Whiteley
G
,
Sasi
A
,
Malhotra
A
.
Ultrasound measurements of intracranial structures in growth-restricted neonates with fetal blood flow redistribution: a pilot observational study
.
Neonatology
.
2020
;
117
(
4
):
446
52
. doi: .
39.
Huang
CC
,
Liu
CC
.
The differences in growth of cerebellar vermis between appropriate-for-gestational-age and small-for-gestational-age newborns
.
Early Hum Dev
.
1993
;
33
(
1
):
9
19
. doi: .
40.
Polat
A
,
Barlow
S
,
Ber
R
,
Achiron
R
,
Katorza
E
.
Volumetric MRI study of the intrauterine growth restriction fetal brain
.
Eur Radiol
.
2017
;
27
(
5
):
2110
8
. doi: .
41.
De Oliveira Júnior
RE
,
Teixeira
SR
,
Santana
EFM
,
Elias Junior
J
,
Costa
FS
,
Araujo Júnior
E
, et al
.
Magnetic resonance imaging of skull and brain parameters in fetuses with intrauterine growth restriction
.
Radiol Bras
.
2021
;
54
(
3
):
141
7
. doi: .
42.
Santilli
G
,
Lamorte
G
,
Carlessi
L
,
Ferrari
D
,
Rota Nodari
L
,
Binda
E
, et al
.
Mild hypoxia enhances proliferation and multipotency of human neural stem cells
.
PLoS One
.
2010
;
5
(
1
):
e8575
. doi: .
43.
Nalivaeva
NN
,
Turner
AJ
,
Zhuravin
IA
.
Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration
.
Front Neurosci
.
2018
;
12
:
825
. doi: .
44.
Li
G
,
Liu
J
,
Guan
Y
,
Ji
X
.
The role of hypoxia in stem cell regulation of the central nervous system: from embryonic development to adult proliferation
.
CNS Neurosci Ther
.
2021
;
27
(
12
):
1446
57
. doi: .
45.
Snijders
RJ
,
De Courcy-Wheeler
RH
,
Nicolaides
KH
.
Intrauterine growth retardation and fetal transverse cerebellar diameter
.
Prenat Diagn
.
1994
;
14
(
12
):
1101
5
. doi: .
46.
Vinkesteijn
A
,
Mulder
P
,
Wladimiroff
J
.
Fetal transverse cerebellar diameter measurements in normal and reduced fetal growth
.
Ultrasound Obstet Gynecol
.
2000
;
15
(
1
):
47
51
. doi: .
47.
Morales-Roselló
J
,
Peralta-Llorens
N
.
Doppler study of the fetal vertebral artery in small for gestational age fetuses with intrauterine growth restriction
.
J Ultrasound Med
.
2012
;
31
(
7
):
1003
10
. doi: .
48.
Morales Roselló
J
,
Hervás Marín
D
,
Perales Marín
A
.
The vertebral artery Doppler might be an alternative to the middle cerebral artery Doppler in the follow-up of the early onset growth-restricted fetus
.
Prenat Diagn
.
2014
;
34
(
2
):
109
14
. doi: .
49.
Duvernoy
HM
.
The human brain stem and cerebellum: surface, structure, vascularization, and three-dimensional sectional anatomy, with MRI
.
Springer Science & Business Media
;
2012
.
50.
Vintzileos
AM
,
Tsapanos
V
.
Biophysical assessment of the fetus
.
Ultrasound Obstet Gynecol
.
1992
;
2
(
2
):
133
43
. doi: .
51.
Baschat
AA
,
Galan
HL
,
Lee
W
,
Devore
GR
,
Mari
G
,
Hobbins
J
, et al
.
The role of the fetal biophysical profile in the management of fetal growth restriction
.
Am J Obstet Gynecol
.
2022
;
226
(
4
):
475
86
. doi: .
52.
Cignini
P
,
Padula
F
,
Giorlandino
M
,
Brutti
P
,
Alfò
M
,
Giannarelli
D
, et al
.
Reference charts for fetal corpus callosum length: a prospective cross-sectional study of 2950 fetuses
.
J Ultrasound Med
.
2014
;
33
(
6
):
1065
78
. doi: .
53.
Cignini
P
,
Giorlandino
M
,
Brutti
P
,
Mangiafico
L
,
Aloisi
A
,
Giorlandino
C
.
Reference charts for fetal cerebellar vermis height: a prospective cross-sectional study of 10605 fetuses
.
PLoS One
.
2016
;
11
(
1
):
e0147528
. doi: .
54.
Fitzgerald
E
,
Hor
K
,
Drake
AJ
.
Maternal influences on fetal brain development: the role of nutrition, infection and stress, and the potential for intergenerational consequences
.
Early Hum Dev
.
2020
;
150
:
105190
. doi: .
55.
Sibbald
CA
,
Nicholas
JL
,
Chapnick
M
,
Ross
N
,
Gandor
PL
,
Waters
WF
, et al
.
Fetal brain ultrasound measures and maternal nutrition: a feasibility study in Ecuador
.
Am J Hum Biol
.
2021
;
33
(
2
):
e23467
. doi: .
56.
Monteagudo
A
,
Timor-Tritsch
IE
,
Mayberry
P
.
Three-dimensional transvaginal neurosonography of the fetal brain: “navigating” in the volume scan
.
Ultrasound Obstet Gynecol
.
2000
;
16
(
4
):
307
13
. doi: .
You do not currently have access to this content.