In fetal cardiology, imaging (especially echocardiography) has demonstrated to help in the diagnosis and monitoring of fetuses with a compromised cardiovascular system potentially associated with several fetal conditions. Different ultrasound approaches are currently used to evaluate fetal cardiac structure and function, including conventional 2-D imaging and M-mode and tissue Doppler imaging among others. However, assessment of the fetal heart is still challenging mainly due to involuntary movements of the fetus, the small size of the heart, and the lack of expertise in fetal echocardiography of some sonographers. Therefore, the use of new technologies to improve the primary acquired images, to help extract measurements, or to aid in the diagnosis of cardiac abnormalities is of great importance for optimal assessment of the fetal heart. Machine leaning (ML) is a computer science discipline focused on teaching a computer to perform tasks with specific goals without explicitly programming the rules on how to perform this task. In this review we provide a brief overview on the potential of ML techniques to improve the evaluation of fetal cardiac function by optimizing image acquisition and quantification/segmentation, as well as aid in improving the prenatal diagnoses of fetal cardiac remodeling and abnormalities.

1.
Rychik
J
,
Tian
Z
,
Bebbington
M
,
Xu
F
,
McCann
M
,
Mann
S
, et al.
The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease
.
Am J Obstet Gynecol
.
2007
Oct
;
197
(
4
):
392.e1
8
. 0002-9378
2.
Crispi
F
,
Hernandez-Andrade
E
,
Pelsers
MM
,
Plasencia
W
,
Benavides-Serralde
JA
,
Eixarch
E
, et al.
Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses
.
Am J Obstet Gynecol
.
2008
Sep
;
199
(
3
):
254.e1
8
. 0002-9378
3.
Van Mieghem
T
,
Gucciardo
L
,
Doné
E
,
Van Schoubroeck
D
,
Graatsma
EM
,
Visser
GH
, et al.
Left ventricular cardiac function in fetuses with congenital diaphragmatic hernia and the effect of fetal endoscopic tracheal occlusion
.
Ultrasound Obstet Gynecol
.
2009
Oct
;
34
(
4
):
424
9
. 0960-7692
4.
Crispi
F
,
Gratacs
E
.
Fetal cardiac function: technical considerations and potential research and clinical applications
.
Fetal Diagn Ther
.
2012
;
32
(
1–2
):
47
64
. 1015-3837
5.
Crispi
F
,
Valenzuela-Alcaraz
B
,
Cruz-Lemini
M
,
Gratacós
E
.
Ultrasound assessment of fetal cardiac function
.
Australas J Ultrasound Med
.
2013
Nov
;
16
(
4
):
158
67
. 1836-6864
6.
Mitchell
TM
.
Machine Learning
.
McGraw Hill
;
1997
.
7.
Deo
RC
.
Machine Learning in Medicine
.
Circulation
.
2015
Nov
;
132
(
20
):
1920
30
. 0009-7322
8.
Lei
B
,
Zhuo
L
,
Chen
S
,
Li
S
,
Ni
D
,
Wang
T
. Automatic recognition of fetal standard plane in ultrasound image. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). IEEE;
2014
; pp 85–8.
9.
Yu
Z
,
Wu
L
,
Ni
D
,
Chen
S
,
Li
S
,
Wang
T
, et al.
Fetal facial standard plane recognition via deep convolutional neural networks
.
Zhongguo Shengwu Yixue Gongcheng Xuebao
.
2017
;
36
(
3
):
267
75
.0258-8021
10.
Wu
L
,
Cheng
JZ
,
Li
S
,
Lei
B
,
Wang
T
,
Ni
D
.
FUIQA: fetal ultrasound image quality assessment with deep convolutional networks
.
IEEE Trans Cybern
.
2017
;
47
(
5
):
1336
49
. 2168-2267
11.
Rahmatullah
B
,
Sarris
I
,
Papageorghiou
A
,
Noble
JA
.
Quality control of fetal ultrasound images: Detection of abdomen anatomical landmarks using AdaBoost.
2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
.
IEEE
;
2011
; pp
6
9
.
12.
Rahmatullah
B
,
Papageorghiou
AT
,
Noble
JA
. Image Analysis Using Machine Learning: Anatomical Landmarks Detection in Fetal Ultrasound Images. 2012 IEEE 36th Annual Computer Software and Applications Conference. IEEE;
2012
; pp 354–5.
13.
Yaqub
M
,
Kelly
B
,
Papageorghiou
AT
,
Noble
JA
.
Guided Random Forests for Identification of Key Fetal Anatomy and Image Categorization in Ultrasound Scans.
International Conference on Medical Image Computing and Computer-Assisted Intervention
.
Springer
,
Cham
;
2015
; pp
687
94
.
14.
Sridar
P
,
Kumar
A
,
Quinton
A
,
Nanan
R
,
Kim
J
,
Krishnakumar
R
.
Decision Fusion-Based Fetal Ultrasound Image Plane Classification Using Convolutional Neural Networks
.
Ultrasound Med Biol
.
2019
May
;
45
(
5
):
1259
73
. 0301-5629
15.
Raynaud
C
,
Ciofolo-Veit
C
,
Lefèvre
T
,
Ardon
R
,
Cavallaro
A
,
Salim
I
, et al.
Multi-organ Detection in 3D Fetal Ultrasound with Machine Learning.
International Workshop on Fetal and Infant Image Analysis
.
Springer
,
Cham
;
2017
; pp
62
72
.
16.
Li
Y
,
Khanal
B
,
Hou
B
,
Alansary
A
,
Cerrolaza
JJ
,
Sinclair
M
, et al.
Standard plane detection in 3D fetal ultrasound using an iterative transformation network. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics).
2018
;11070 LNCS:392–400.
17.
Yaqub
M
,
Kelly
B
,
Papageorghiou
AT
,
Noble
JA
.
A Deep Learning Solution for Automatic Fetal Neurosonographic Diagnostic Plane Verification Using Clinical Standard Constraints
.
Ultrasound Med Biol
.
2017
Dec
;
43
(
12
):
2925
33
. 0301-5629
18.
Ambroise Grandjean
G
,
Hossu
G
,
Bertholdt
C
,
Noble
P
,
Morel
O
,
Grangé
G
.
Artificial intelligence assistance for fetal head biometry: assessment of automated measurement software
.
Diagn Interv Imaging
.
2018
Sep
;
99
(
11
):
709
16
. 2211-5684
19.
Bridge
CP
,
Ioannou
C
,
Noble
JA
.
Automated annotation and quantitative description of ultrasound videos of the fetal heart
.
Med Image Anal
.
2017
Feb
;
36
:
147
61
. 1361-8415
20.
Yu
Q
,
Yan
H
,
Song
L
,
Guo
W
,
Liu
H
,
Si
J
, et al.
Automatic identifying of maternal ECG source when applying ICA in fetal ECG extraction
.
Biocybern Biomed Eng
.
2018
Jan
;
38
(
3
):
448
55
. 0208-5216
21.
Muduli
PR
,
Gunukula
RR
,
Mukherjee
A
.
A deep learning approach to fetal-ECG signal reconstruction.
2016 Twenty Second National Conference on Communication (NCC)
.
IEEE
;
2016
; pp
1
6
.
22.
Wang
S
,
Housden
J
,
Noh
Y
,
Singh
D
,
Singh
A
,
Skelton
E
, et al.
Robotic-assisted Ultrasound for Fetal Imaging: Evolution from Single-arm to Dual-arm System.
2019
Feb [cited 2019 Aug 21]. Available from: http://arxiv.org/abs/1902.05458
23.
Kim
HP
,
Lee
SM
,
Kwon
JY
,
Park
Y
,
Kim
KC
,
Seo
JK
.
Automatic evaluation of fetal head biometry from ultrasound images using machine learning
.
Physiol Meas
.
2019
May
;
40
(
6
):
065009
. 0967-3334
24.
Li
J
,
Wang
Y
,
Lei
B
,
Cheng
JZ
,
Qin
J
,
Wang
T
, et al.
Automatic Fetal Head Circumference Measurement in Ultrasound Using Random Forest and Fast Ellipse Fitting
.
IEEE J Biomed Health Inform
.
2018
Jan
;
22
(
1
):
215
23
. 2168-2194
25.
van den Heuvel
TL
,
Petros
H
,
Santini
S
,
de Korte
CL
,
van Ginneken
B
.
Automated Fetal Head Detection and Circumference Estimation from Free-Hand Ultrasound Sweeps Using Deep Learning in Resource-Limited Countries
.
Ultrasound Med Biol
.
2019
Mar
;
45
(
3
):
773
85
. 0301-5629
26.
Lorenz
C
,
Brosch
T
,
Ciofolo-Veit
C
,
Tobias
K
,
Lefevre
T
,
Salim
I
, et al.
Automated abdominal plane and circumference estimation in 3D US for fetal screening. In: Angelini ED, Landman BA, editors. Medical Imaging 2018: Image Processing. SPIE;
2018
; p 17.
27.
Kim
B
,
Kim
KC
,
Park
Y
,
Kwon
JY
,
Jang
J
,
Seo
JK
.
Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images
.
Physiol Meas
.
2018
Oct
;
39
(
10
):
105007
. 0967-3334
28.
Rawat
V
,
Jain
A
,
Shrimali
V
.
Automated Techniques for the Interpretation of Fetal Abnormalities: A Review
.
Appl Bionics Biomech
.
2018
Jun
;
2018
:
1
11
. 1176-2322
29.
Papageorghiou
AT
,
Kemp
B
,
Stones
W
,
Ohuma
EO
,
Kennedy
SH
,
Purwar
M
, et al.
Ultrasound-based gestational-age estimation in late pregnancy
.
Ultrasound Obstet Gynecol
.
2016
Dec
;
48
(
6
):
719
26
. 0960-7692
30.
Ashley
I
.
Naimi, Robert W. Platt, Jacob C. Larkin. Machine Learning for Fetal Growth Prediction
.
Epidemiology
.
2018
;
29
(
2
):
290
8
. 1044-3983
31.
Chuang
L
,
Hwang
JY
,
Chang
CH
,
Yu
CH
,
Chang
FM
.
Ultrasound estimation of fetal weight with the use of computerized artificial neural network model
.
Ultrasound Med Biol
.
2002
Aug
;
28
(
8
):
991
6
. 0301-5629
32.
Namburete
AI
,
Noble
JA
. Fetal cranial segmentation in 2D ultrasound images using shape properties of pixel clusters. 2013 IEEE 10th International Symposium on Biomedical Imaging. IEEE;
2013
; pp 720–3.
33.
Li
Y
,
Xu
R
,
Ohya
J
,
Iwata
H
.
Automatic fetal body and amniotic fluid segmentation from fetal ultrasound images by encoder-decoder network with inner layers.
Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS
.
2017
;
1485
8
.
34.
Rajchl
M
,
Lee
MC
,
Oktay
O
,
Kamnitsas
K
,
Passerat-Palmbach
J
,
Bai
W
, et al.
DeepCut: Object Segmentation from Bounding Box Annotations Using Convolutional Neural Networks
.
IEEE Trans Med Imaging
.
2017
;
36
(
2
):
674
83
. 0278-0062
35.
Burgos-Artizzu
XP
,
Perez-Moreno
Á
,
Coronado-Gutierrez
D
,
Gratacos
E
,
Palacio
M
.
Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis
.
Sci Rep
.
2019
Feb
;
9
(
1
):
1950
. 2045-2322
36.
Wang
G
,
Li
W
,
Zuluaga
MA
,
Pratt
R
,
Patel
PA
,
Aertsen
M
, et al.
Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning
.
IEEE Trans Med Imaging
.
2018
Jul
;
37
(
7
):
1562
73
. 0278-0062
37.
Huang
R
,
Xie
W
,
Alison Noble
J
.
VP-Nets : efficient automatic localization of key brain structures in 3D fetal neurosonography
.
Med Image Anal
.
2018
Jul
;
47
:
127
39
. 1361-8415
38.
Maraci
MA
,
Bridge
CP
,
Napolitano
R
,
Papageorghiou
A
,
Noble
JA
.
A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat
.
Med Image Anal
.
2017
Apr
;
37
:
22
36
. 1361-8415
39.
Krupa
N
,
Ma
M
,
Zahedi
E
,
Ahmed
S
,
Hassan
FM
.
MA M, Zahedi E, Ahmed S, Hassan FM. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine
.
Biomed Eng Online
.
2011
Jan
;
10
(
1
):
6
. 1475-925X
40.
Lukoševičius
M
.
Vaidotas Marozas.
Noninvasive fetal QRS detection using Echo State Network. Computing in Cardiology.
2013
; [cited 2019 Jan 24].Available from: https://ieeexplore.ieee.org/abstract/document/6712447
41.
Sulas
E
,
Ortu
E
,
Raffo
L
,
Urru
M
,
Tumbarello
R
,
Pani
D
. Automatic Recognition of Complete Atrioventricular Activity in Fetal Pulsed-Wave Doppler Signals. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE;
2018
; pp 917–20.
42.
Alnuaimi
SA
,
Jimaa
S
,
Khandoker
AH
.
Fetal Cardiac Doppler Signal Processing Techniques: Challenges and Future Research Directions
.
Front Bioeng Biotechnol
.
2017
Dec
;
5
:
82
. 2296-4185
43.
Rittenhouse
KJ
,
Vwalika
B
,
Keil
A
,
Winston
J
,
Stoner
M
,
Kapasa
M
, et al.
Improving preterm newborn identification in low-resource settings with machine learning
.
bioRxiv
.
2018
;(
May
):
334904
.
44.
Hamilton
EF
,
Dyachenko
A
,
Ciampi
A
,
Maurel
K
,
Warrick
PA
,
Garite
TJ
.
Estimating risk of severe neonatal morbidity in preterm births under 32 weeks of gestation
.
J Matern Neonatal Med
;
2018
.
45.
Neocleous
AC
,
Nicolaides
KH
,
Schizas
CN
.
First Trimester Noninvasive Prenatal Diagnosis: A Computational Intelligence Approach
.
IEEE J Biomed Health Inform
.
2016
Sep
;
20
(
5
):
1427
38
. 2168-2194
46.
Bahado-Singh
RO
,
Sonek
J
,
McKenna
D
,
Cool
D
,
Aydas
B
,
Turkoglu
O
, et al.
Artificial Intelligence and amniotic fluid multiomics analysis: the prediction of perinatal outcome in asymptomatic short cervix
.
Ultrasound Obstet Gynecol
.
2018
Oct
;
•••
: 0960-7692
47.
Bassil
HE
,
Dripps
JH
.
Real time processing and analysis of fetal phonocardiographic signals.
Clin Phys Physiol Meas.
1989
[cited 2018 Nov 13]. ;10 Suppl B:67–74.
48.
Chudáček
V
,
Spilka
J
,
Burša
M
,
Janků
P
,
Hruban
L
,
Huptych
M
, et al.
Open access intrapartum CTG database.
2014
; [cited 2019 Jun 13].Available from: http://www.biomedcentral.com/1471-2393/14/16DATABASE
49.
Ayres-de-Campos
D
,
Sousa
P
,
Costa
A
,
Bernardes
J
.
Omniview-SisPorto® 3.5 – a central fetal monitoring station with online alerts based on computerized cardiotocogram+ST event analysis
.
J Perinat Med
.
2008
Jan
;
36
(
3
):
260
4
. 0300-5577
50.
Graham
EM
,
Petersen
SM
,
Christo
DK
,
Fox
HE
.
Intrapartum Electronic Fetal Heart Rate Monitoring and the Prevention of Perinatal Brain Injury
.
Obstet Gynecol
.
2006
Sep
;
108
(
3, Part 1
):
656
66
. 0029-7844
51.
Iraji
MS
.
Prediction of fetal state from the cardiotocogram recordings using neural network models
.
Artif Intell Med
.
2019
May
;
96
:
33
44
. 0933-3657
52.
Brocklehurst
P
.
A study of an intelligent system to support decision making in the management of labour using the cardiotocograph – the INFANT study protocol
.
BMC Pregnancy Childbirth
.
2016
Dec
;
16
(
1
):
10
. 1471-2393
53.
Hamilton
EF
,
Warrick
PA
.
New perspectives in electronic fetal surveillance
.
J Perinat Med
.
2013
Jan
;
41
(
1
):
83
92
. [cited 2019 Aug 21]. 0300-5577
54.
Alonso-Betanzos
A
,
Moret-Bonillo
V
,
Hernandez-Sande
C
.
Foetos: an expert system for fetal assessment
.
IEEE Trans Biomed Eng
.
1991
;
38
(
2
):
199
211
. 0018-9294
55.
Akbulut
A
,
Ertugrul
E
,
Topcu
V
.
Fetal health status prediction based on maternal clinical history using machine learning techniques
.
Comput Methods Programs Biomed
.
2018
Sep
;
163
:
87
100
. 0169-2607
56.
Kazantsev
A
,
Ponomareva
J
,
Kazantsev
P
,
Digilov
R
,
Huang
P
.
Development of e-health network for in-home pregnancy surveillance based on artificial intelligence.
Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics
.
IEEE
;
2012
; pp
82
4
.
57.
Balayla
J
,
Shrem
G
.
Use of artificial intelligence (AI) in the interpretation of intrapartum fetal heart rate (FHR) tracings: a systematic review and meta-analysis
.
Arch Gynecol Obstet
.
2019
;
300
(
May
):
1
8
. 0932-0067
58.
Crispi
F
,
Bijnens
B
,
Figueras
F
,
Bartrons
J
,
Eixarch
E
,
Le Noble
F
, et al.
Fetal growth restriction results in remodeled and less efficient hearts in children
.
Circulation
.
2010
Jun
;
121
(
22
):
2427
36
. 0009-7322
59.
Cruz-Lemini
M
,
Crispi
F
,
Valenzuela-Alcaraz
B
,
Figueras
F
,
Sitges
M
,
Bijnens
B
, et al.
Fetal cardiovascular remodeling persists at 6 months in infants with intrauterine growth restriction
.
Ultrasound Obstet Gynecol
.
2016
Sep
;
48
(
3
):
349
56
. 0960-7692
60.
Sarvari
SI
,
Rodriguez-Lopez
M
,
Nuñez-Garcia
M
,
Sitges
M
,
Sepulveda-Martinez
A
,
Camara
O
, et al.
Persistence of Cardiac Remodeling in Preadolescents With Fetal Growth Restriction
.
Circ Cardiovasc Imaging
.
2017
Jan
;
10
(
1
): 1941-9651
61.
Gurgen
F
,
Onal
E
,
Varol
FG
.
IUGR detection by ultrasonographic examinations using neural networks
.
IEEE Eng Med Biol Mag
.
1997
;
16
(
3
):
55
8
. 0739-5175
62.
Magenes
G
,
Pedrinazzi
L
,
Signorini
MG
.
Identification of fetal sufferance antepartum through a multiparametric analysis and a support vector machine.
The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE;
2004
; pp 462–5.
63.
Gadagkar
AV
,
Shreedhara
KS
.
Features Based IUGR Diagnosis Using Variational Level Set Method and Classification Using Artificial Neural Networks.
2014 Fifth International Conference on Signal and Image Processing
.
IEEE
;
2014
; pp
303
9
.
64.
Rawat
V
,
Jain
A
,
Shrimali
V
,
Rawat
A
.
Automatic Detection of Fetal Abnormality Using Head and Abdominal Circumference.
Lecture Notes in Computer Science (LNCS, volume 9876). Springer, Cham;
2016
; pp 525–34.
65.
Kuhle
S
,
Maguire
B
,
Zhang
H
,
Hamilton
D
,
Allen
AC
,
Joseph
KS
, et al.
Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort study
.
BMC Pregnancy Childbirth
.
2018
Dec
;
18
(
1
):
333
. 1471-2393
66.
Garcia-Canadilla
P
,
Rudenick
PA
,
Crispi
F
,
Cruz-Lemini
M
,
Palau
G
,
Camara
O
, et al.
A Computational Model of the Fetal Circulation to Quantify Blood Redistribution in Intrauterine Growth Restriction
.
PLOS Comput Biol
.
2014
Jun
;
10
(
6
):
e1003667
. 1553-734X
67.
Garcia-Canadilla
P
,
Crispi
F
,
Cruz-Lemini
M
,
Triunfo
S
,
Nadal
A
,
Valenzuela-Alcaraz
B
, et al.
Patient-specific estimates of vascular and placental properties in growth-restricted fetuses based on a model of the fetal circulation
.
Placenta
.
2015
Jul
;
36
(
9
):
981
9
. 0143-4004
68.
Cikes
M
,
Sanchez-Martinez
S
,
Claggett
B
,
Duchateau
N
,
Piella
G
,
Butakoff
C
, et al.
Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy
.
Eur J Heart Fail
.
2019
Jan
;
21
(
1
):
74
85
. 1388-9842
69.
Hoodbhoy
Z
,
Hasan
B
,
Jehan
F
,
Bijnens
B
,
Chowdhury
D
.
Machine learning from fetal flow waveforms to predict adverse perinatal outcomes: a study protocol.
Gates open Res.
2018
Feb;2:8.
70.
Mínguez
PG
,
Bijnens
B
,
Bernardino
G
,
Lluch
È
,
Soveral
I
,
Gómez
O
, et al.
Assessment of haemodynamic remodeling in fetal aortic coarctation using a lumped model of the circulation.
2017
. DOI:
71.
Yeo
L
,
Romero
R
.
Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart
.
Ultrasound Obstet Gynecol
.
2013
Sep
;
42
(
3
):
268
84
. 0960-7692
72.
Arnaout
R
,
Curran Mbbs Bsc
L
,
Chinn
E
,
Zhao
Y
,
Rdcs
P
,
Moon-Grady
A
.
Deep-learning models improve on community-level diagnosis for common congenital heart disease lesions.
2018
. DOI: arXiv:1809.06993v1.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.