Graves’ disease (GD) is a systemic autoimmune disorder characterized by the infiltration of thyroid antigen-specific T cells into thyroid-stimulating hormone receptor (TSH-R)-expressing tissues. Stimulatory autoantibodies (Ab) in GD activate the TSH-R leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with biochemically confirmed thyrotoxicosis, positive TSH-R-Ab, a hypervascular and hypoechoic thyroid gland (ultrasound), and associated orbitopathy. In GD, measurement of TSH-R-Ab is recommended for an accurate diagnosis/differential diagnosis, prior to stopping antithyroid drug (ATD) treatment and during pregnancy. Graves’ hyperthyroidism is treated by decreasing thyroid hormone synthesis with the use of ATD, or by reducing the amount of thyroid tissue with radioactive iodine (RAI) treatment or total thyroidectomy. Patients with newly diagnosed Graves’ hyperthyroidism are usually medically treated for 12–18 months with methimazole (MMI) as the preferred drug. In children with GD, a 24- to 36-month course of MMI is recommended. Patients with persistently high TSH-R-Ab at 12–18 months can continue MMI treatment, repeating the TSH-R-Ab measurement after an additional 12 months, or opt for therapy with RAI or thyroidectomy. Women treated with MMI should be switched to propylthiouracil when planning pregnancy and during the first trimester of pregnancy. If a patient relapses after completing a course of ATD, definitive treatment is recommended; however, continued long-term low-dose MMI can be considered. Thyroidectomy should be performed by an experienced high-volume thyroid surgeon. RAI is contraindicated in Graves’ patients with active/severe orbitopathy, and steroid prophylaxis is warranted in Graves’ patients with mild/active orbitopathy receiving RAI.

1.
Bahn RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, Laurberg P, McDougall IR, Montori VM, Rivkees SA, Ross DS, Sosa JA, Stan MN; American Thyroid Association; American Association of Clinical Endocrinologists: Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Endocr Pract 2011; 17: 456–520.
2.
Bartalena L: Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol 2013; 9: 724–734.
3.
Kahaly GJ, Dillmann WH: Thyroid hormone action in the heart. Endocr Rev 2005; 26: 704–728.
4.
Biondi B, Kahaly GJ: Cardiovascular involvement in patients with different causes of hyperthyroidism. Nat Rev Endocrinol 2010; 6: 431–443.
5.
Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, Rivkees SA, Samuels M, Sosa JA, Stan MN, Walter MA: 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 2016; 26: 1343–1421.
6.
Smith TJ, Hegedus L: Graves’ disease. N Engl J Med 2016; 375: 1552–1565.
7.
Nystrom HF, Jansson S, Berg G: Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol 2013; 78: 768–776.
8.
McLeod DS, Caturegli P, Cooper DS, Matos PG, Hutfless S: Variation in rates of autoimmune thyroid disease by race/ethnicity in US military personnel. JAMA 2014; 311: 1563–1565.
9.
Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM: The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr Rev 1998; 19: 673–716.
10.
Rapoport B, McLachlan SM: TSH receptor cleavage into subunits and shedding of the A-subunit; a molecular and clinical perspective. Endocr Rev 2016; 37: 114–134.
11.
Smith TJ, Hegedus L, Douglas RS: Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Graves’ orbitopathy. Best Pract Res Clin Endocrinol Metab 2012; 26: 291–302.
12.
Brix TH, Kyvik KO, Christensen K, Hegedus L: Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab 2001; 86: 930–934.
13.
Inaba H, De Groot LJ, Akamizu T: Thyrotropin receptor epitope and human leukocyte antigen in Graves’ disease. Front Endocrinol 2016; 7: 120.
14.
Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y: Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun 2015; 64: 82–90.
15.
Strieder TG, Prummel MF, Tijssen JG, Endert E, Wiersinga WM: Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin Endocrinol 2003; 59: 396–401.
16.
Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G: High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves’ disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J Intern Med 1991; 229: 415–420.
17.
Brix TH, Hansen PS, Kyvik KO, Hegedus L: Cigarette smoking and risk of clinically overt thyroid disease: a population-based twin case-control study. Arch Intern Med 2000; 160: 661–666.
18.
Swiglo BA, Murad MH, Schunemann HJ, Kunz R, Vigersky RA, Guyatt GH, Monto ri VM: A case for clarity, consistency, and helpfulness: state-of-the-art clinical practice guidelines in endocrinology using the grading of recommendations, assessment, development, and evaluation system. J Clin Endocrinol Metab 2008; 93: 666–673.
19.
de los Santos ET, Starich GH, Mazzaferri EL: Sensitivity, specificity, and cost-effectiveness of the sensitive thyrotropin assay in the diagnosis of thyroid disease in ambulatory patients. Arch Intern Med 1989; 149: 526–532.
20.
Spencer CA, LoPresti JS, Patel A, Guttler RB, Eigen A, Shen D, Gray D, Nicoloff JT: Applications of a new chemiluminometric thyrotropin assay to subnormal measurement. J Clin Endocrinol Metab 1990; 70: 453–460.
21.
Grebe SK, Kahaly GJ: Laboratory testing in hyperthyroidism. Am J Med 2012; 125:S2.
22.
Bartalena L, Burch HB, Burman KD, Kahaly GJ: A 2013 European survey of clinical practice patterns in the management of Graves’ disease. Clin Endocrinol 2016; 84: 115–120.
23.
Kahaly GJ, Olivo PD: Graves’ disease. N Engl J Med 2017; 376: 184.
24.
Kahaly GJ, Diana T: TSH receptor antibody functionality and nomenclature. Front Endocrinol 2017; 8: 28.
25.
Tozzoli R, Bagnasco M, Giavarina D, Bizzaro N: TSH receptor autoantibody immunoassay in patients with Graves’ disease: improvement of diagnostic accuracy over different generations of methods: systematic review and meta-analysis. Autoimmun Rev 2012; 12: 107–113.
26.
Kahaly GJ: Bioassays for TSH receptor antibodies: quo vadis? Eur Thyroid J 2015; 4: 3–5.
27.
Araki N, Iida M, Amino N, Morita S, Ide A, Nishihara E, Ito M, Saito J, Nishikawa T, Katsuragi K, Miyauchi A: Rapid bioassay for detection of thyroid-stimulating antibodies using cyclic adenosine monophosphate-gated calcium channel and aequorin. Eur Thyroid J 2015; 4: 14–19.
28.
Lytton SD, Kahaly GJ: Bioassays for TSH-receptor autoantibodies: an update. Autoimmun Rev 2010; 10: 116–122.
29.
Lytton SD, Li Y, Olivo PD, Kohn LD, Kahaly GJ: Novel chimeric thyroid-stimulating hormone-receptor bioassay for thyroid-stimulating immunoglobulins. Clin Exp Immunol 2010; 162: 438–446.
30.
Li Y, Kim J, Diana T, Klasen R, Olivo PD, Kahaly GJ: A novel bioassay for anti-thyrotrophin receptor autoantibodies detects both thyroid-blocking and stimulating activity. Clin Exp Immunol 2013; 173: 390–397.
31.
Diana T, Kanitz M, Lehmann M, Li Y, Olivo PD, Kahaly GJ: Standardization of a bioassay for thyrotropin receptor stimulating autoantibodies. Thyroid 2015; 25: 169–175.
32.
Diana T, Li Y, Olivo PD, Lackner KJ, Kim H, Kanitz M, Kahaly GJ: Analytical performance and validation of a bioassay for thyroid-blocking antibodies. Thyroid 2016; 26: 734–740.
33.
Diana T, Krause J, Olivo PD, Konig J, Kanitz M, Decallonne B, Kahaly GJ: Prevalence and clinical relevance of thyroid stimulating hormone receptor-blocking antibodies in autoimmune thyroid disease. Clin Exp Immunol 2017; 189: 304–309.
34.
Diana T, Wuster C, Kanitz M, Kahaly GJ: Highly variable sensitivity of five binding and two bio-assays for TSH-receptor antibodies. J Endocrinol Invest 2016; 39: 1159–1165.
35.
Diana T, Wüster C, Olivo PD, Unterrainer A, König J, Kanitz M, Bossowski A, Decallonne B, Kahaly GJ: Performance and specificity of six immunoassays for TSH receptor anti­bodies: a multicenter study. Eur Thyroid J 2017; 6: 2.
36.
Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ: A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab 2010; 95: 2123–2131.
37.
Ponto KA, Kanitz M, Olivo PD, Pitz S, Pfeiffer N, Kahaly GJ: Clinical relevance of thyroid-stimulating immunoglobulins in graves’ ophthalmopathy. Ophthalmology 2011; 118: 2279–2285.
38.
Ponto KA, Diana T, Binder H, Matheis N, Pitz S, Pfeiffer N, Kahaly GJ: Thyroid-stimulating immunoglobulins indicate the onset of dysthyroid optic neuropathy. J Endocrinol Invest 2015; 38: 769–777.
39.
Kahaly GJ, Diana T, Glang J, Kanitz M, Pitz S, Konig J: Thyroid stimulating antibodies are highly prevalent in Hashimoto’s thyroiditis and associated orbitopathy. J Clin Endocrinol Metab 2016; 101: 1998–2004.
40.
Diana T, Brown RS, Bossowski A, Segni M, Niedziela M, Konig J, Bossowska A, Ziora K, Hale A, Smith J, Pitz S, Kanitz M, Kahaly GJ: Clinical relevance of thyroid-stimulating autoantibodies in pediatric graves’ disease – a multicenter study. J Clin Endocrinol Metab 2014; 99: 1648–1655.
41.
Kampmann E, Diana T, Kanitz M, Hoppe D, Kahaly GJ: Thyroid stimulating but not blocking autoantibodies are highly prevalent in severe and active thyroid-associated orbitopathy: a prospective study. Int J Endocrinol 2015; 2015: 678194.
42.
Stozek K, Bossowski A, Ziora K, Bossowska A, Mrugacz M, Noczynska A, Walczak M, Petriczko E, Pyrzak B, Kucharska A, Szalecki M, Diana T, Kahaly GJ: Functional TSH receptor antibodies in children with autoimmune thyroid diseases. Autoimmunity 2018; 51: 62–68.
43.
Kiefer FW, Klebermass-Schrehof K, Steiner M, Worda C, Kasprian G, Diana T, Kahaly GJ, Gessl A: Fetal/neonatal thyrotoxicosis in a newborn from a hypothyroid woman with Hashimoto thyroiditis. J Clin Endocrinol Metab 2017; 102: 6–9.
44.
Mestman JH: Fetal hyperthyroidism resulted from TSI in a mother with Hashimoto’s hypothyroidism. Clin Thyroidol 2017; 29: 32–34.
45.
McKee A, Peyerl F: TSI assay utilization: impact on costs of Graves’ hyperthyroidism diagnosis. Am J Manag Care 2012; 18:e1–14.
46.
Goichot B, Bouee S, Castello-Bridoux C, Caron P: Survey of clinical practice patterns in the management of 992 hyperthyroid patients in France. Eur Thyroid J 2017; 6: 152–159.
47.
Kahaly GJ, Bartalena L, Hegedus L: The American Thyroid Association/American Association of Clinical Endocrinologists guidelines for hyperthyroidism and other causes of thyrotoxicosis: a European perspective. Thyroid 2011; 21: 585–591.
48.
Hegedus L: Thyroid ultrasound. Endocrinol Metab Clin North Am 2001; 30: 339–360.
49.
Vitti P, Rago T, Mancusi F, Pallini S, Tonacchera M, Santini F, Chiovato L, Marcocci C, Pinchera A: Thyroid hypoechogenic pattern at ultrasonography as a tool for predicting recurrence of hyperthyroidism after medical treatment in patients with Graves’ disease. Acta Endocrinol 1992; 126: 128–131.
50.
Erdogan MF, Anil C, Cesur M, Baskal N, Erdogan G: Color flow Doppler sonography for the etiologic diagnosis of hyperthyroidism. Thyroid 2007; 17: 223–228.
51.
Ralls PW, Mayekawa DS, Lee KP, Colletti PM, Radin DR, Boswell WD, Halls JM: Color-flow Doppler sonography in Graves disease: “thyroid inferno.” AJR Am J Roentgenol 1988; 150: 781–784.
52.
Kim TK, Lee EJ: The value of the mean peak systolic velocity of the superior thyroidal artery in the differential diagnosis of thyrotoxicosis. Ultrasonography 2015; 34: 292–296.
53.
Emiliano AB, Governale L, Parks M, Cooper DS: Shifts in propylthiouracil and methimazole prescribing practices: antithyroid drug use in the United States from 1991 to 2008. J Clin Endocrinol Metab 2010; 95: 2227–2233.
54.
Brito JP, Schilz S, Singh Ospina N, Rodriguez-Gutierrez R, Maraka S, Sangaralingham LR, Montori VM: Antithyroid drugs – the most common treatment for Graves’ disease in the United States: a nationwide population-based study. Thyroid 2016; 26: 1144–1145.
55.
Cooper DS: Antithyroid drugs in the management of patients with Graves’ disease: an evidence-based approach to therapeutic controversies. J Clin Endocrinol Metab 2003; 88: 3474–3481.
56.
Cooper DS: Antithyroid drugs. N Engl J Med 2005; 352: 905–917.
57.
Abraham P, Avenell A, McGeoch SC, Clark LF, Bevan JS: Antithyroid drug regimen for treating Graves’ hyperthyroidism. Cochrane Database Syst Rev 2010:CD003420.
58.
Leschik JJ, Diana T, Olivo PD, Konig J, Krahn U, Li Y, Kanitz M, Kahaly GJ: Analytical performance and clinical utility of a bioassay for thyroid-stimulating immunoglobulins. Am J Clin Pathol 2013; 139: 192–200.
59.
Giuliani C, Cerrone D, Harii N, Thornton M, Kohn LD, Dagia NM, Bucci I, Carpentieri M, Di Nenno B, Di Blasio A, Vitti P, Monaco F, Napolitano G: A TSHR-LH/CGR chimera that measures functional thyroid-stimulating autoantibodies (TSAb) can predict remission or recurrence in Graves’ patients undergoing antithyroid drug (ATD) treatment. J Clin Endocrinol Metab 2012; 97:E1080–E1087.
60.
Laurberg P, Berman DC, Andersen S, Bulow Pedersen I: Sustained control of Graves’ hyperthyroidism during long-term low-dose antithyroid drug therapy of patients with severe Graves’ orbitopathy. Thyroid 2011; 21: 951–956.
61.
Elbers L, Mourits M, Wiersinga W: Outcome of very long-term treatment with antithyroid drugs in Graves’ hyperthyroidism associated with Graves’ orbitopathy. Thyroid 2011; 21: 279–283.
62.
Leger J, Carel JC: Management of endocrine disease: arguments for the prolonged use of antithyroid drugs in children with Graves’ disease. Eur J Endocrinol 2017; 177:R59-R67.
63.
Pearce SH: Spontaneous reporting of adverse reactions to carbimazole and propylthiouracil in the UK. Clin Endocrinol 2004; 61: 589–594.
64.
Yang J, Zhu YJ, Zhong JJ, Zhang J, Weng WW, Liu ZF, Xu Q, Dong MJ: Characteristics of antithyroid drug-induced agranulocytosis in patients with hyperthyroidism: a retrospective analysis of 114 cases in a single institution in China involving 9690 patients referred for radioiodine treatment over 15 years. Thyroid 2016; 26: 627–633.
65.
Nakamura H, Miyauchi A, Miyawaki N, Imagawa J: Analysis of 754 cases of antithyroid drug-induced agranulocytosis over 30 years in Japan. J Clin Endocrinol Metab 2013; 98: 4776–4783.
66.
Watanabe N, Narimatsu H, Noh JY, Yamaguchi T, Kobayashi K, Kami M, Kunii Y, Mukasa K, Ito K, Ito K: Antithyroid drug-induced hematopoietic damage: a retrospective cohort study of agranulocytosis and pancytopenia involving 50,385 patients with Graves’ disease. J Clin Endocrinol Metab 2012; 97:E49–E53.
67.
Chen PL, Shih SR, Wang PW, Lin YC, Chu CC, Lin JH, Chen SC, Chang CC, Huang TS, Tsai KS, Tseng FY, Wang CY, Lu JY, Chiu WY, Chang CC, Chen YH, Chen YT, Fann CS, Yang WS, Chang TC: Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. Nat Commun 2015; 6: 7633.
68.
Hallberg P, Eriksson N, Ibanez L, Bondon-Guitton E, Kreutz R, Carvajal A, Lucena MI, Ponce ES, Molokhia M, Martin J, Axelsson T, Yue QY, Magnusson PK, Wadelius M; EuDACc: Genetic variants associated with antithyroid drug-induced agranulocytosis: a genome-wide association study in a European population. Lancet Diabetes Endocrinol 2016; 4: 507–516.
69.
Plantinga TS, Arts P, Knarren GH, Mulder AH, Wakelkamp IM, Hermus AR, Joosten LA, Netea MG, Bisschop PH, de Herder WW, Beijers HJ, de Bruin IJ, Gilissen C, Veltman JA, Hoischen A, Smit JW, Netea-Maier RT: Rare NOX3 variants confer susceptibility to agranulocytosis during thyrostatic treatment of Graves’ disease. Clin Pharmacol Ther 2017; 102: 1017–1024.
70.
Rivkees SA, Mattison DR: Ending propylthiouracil-induced liver failure in children. N Engl J Med 2009; 360: 1574–1575.
71.
Wang MT, Lee WJ, Huang TY, Chu CL, Hsieh CH: Antithyroid drug-related hepatotoxicity in hyperthyroidism patients: a population-based cohort study. Br J Clin Pharmacol 2014; 78: 619–629.
72.
Castro MR, Espiritu RP, Bahn RS, Henry MR, Gharib H, Caraballo PJ, Morris JC: Predictors of malignancy in patients with cytologically suspicious thyroid nodules. Thyroid 2011; 21: 1191–1198.
73.
Sundaresh V, Brito JP, Wang Z, Prokop LJ, Stan MN, Murad MH, Bahn RS: Comparative effectiveness of therapies for Graves’ hyperthyroidism: a systematic review and network meta-analysis. J Clin Endocrinol Metab 2013; 98: 3671–3677.
74.
Struja T, Fehlberg H, Kutz A, Guebelin L, Degen C, Mueller B, Schuetz P: Can we predict relapse in Graves’ disease? Results from a systematic review and meta-analysis. Eur J Endocrinol 2017; 176: 87–97.
75.
Vos XG, Endert E, Zwinderman AH, Tijssen JG, Wiersinga WM: Predicting the risk of recurrence before the start of antithyroid drug therapy in patients with Graves’ hyperthyroidism. J Clin Endocrinol Metab 2016; 101: 1381–1389.
76.
Villagelin D, Romaldini JH, Santos RB, Milkos AB, Ward LS: Outcomes in relapsed Graves’ disease patients following radioiodine or prolonged low dose of methimazole treatment. Thyroid 2015; 25: 1282–1290.
77.
Azizi F, Ataie L, Hedayati M, Mehrabi Y, Sheikholeslami F: Effect of long-term continuous methimazole treatment of hyperthyroidism: comparison with radioiodine. Eur J Endocrinol 2005; 152: 695–701.
78.
Biondi B, Bartalena L, Cooper DS, Hegedus L, Laurberg P, Kahaly GJ: The 2015 European Thyroid Association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur Thyroid J 2015; 4: 149–163.
79.
Collet TH, Gussekloo J, Bauer DC, den Elzen WP, Cappola AR, Balmer P, Iervasi G, Asvold BO, Sgarbi JA, Volzke H, Gencer B, Maciel RM, Molinaro S, Bremner A, Luben RN, Maisonneuve P, Cornuz J, Newman AB, Khaw KT, Westendorp RG, Franklyn JA, Vittinghoff E, Walsh JP, Rodondi N; Thyroid Studies Collaboration: Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med 2012; 172: 799–809.
80.
Gencer B, Collet TH, Virgini V, Bauer DC, Gussekloo J, Cappola AR, Nanchen D, den Elzen WP, Balmer P, Luben RN, Iacoviello M, Triggiani V, Cornuz J, Newman AB, Khaw KT, Jukema JW, Westendorp RG, Vittinghoff E, Aujesky D, Rodondi N; Thyroid Studies Collaboration: Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation 2012; 126: 1040–1049.
81.
Wirth CD, Blum MR, da Costa BR, Baumgartner C, Collet TH, Medici M, Peeters RP, Aujesky D, Bauer DC, Rodondi N: Subclinical thyroid dysfunction and the risk for fractures: a systematic review and meta-analysis. Ann Intern Med 2014; 161: 189–199.
82.
Blum MR, Bauer DC, Collet TH, Fink HA, Cappola AR, da Costa BR, Wirth CD, Peeters RP, Asvold BO, den Elzen WP, Luben RN, Imaizumi M, Bremner AP, Gogakos A, Eastell R, Kearney PM, Strotmeyer ES, Wallace ER, Hoff M, Ceresini G, Rivadeneira F, Uitterlinden AG, Stott DJ, Westendorp RG, Khaw KT, Langhammer A, Ferrucci L, Gussekloo J, Williams GR, Walsh JP, Juni P, Aujesky D, Rodondi N; Thyroid Studies Collaboration: Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 2015; 313: 2055–2065.
83.
Zhyzhneuskaya S, Addison C, Tsatlidis V, Weaver JU, Razvi S: The natural history of subclinical hyperthyroidism in Graves’ disease: the rule of thirds. Thyroid 2016; 26: 765–769.
84.
Satoh T, Isozaki O, Suzuki A, Wakino S, Iburi T, Tsuboi K, Kanamoto N, Otani H, Furukawa Y, Teramukai S, Akamizu T: 2016 guidelines for the management of thyroid storm from the Japan Thyroid Association and Japan Endocrine Society (first edition). Endocr J 2016; 63: 1025–1064.
85.
Akamizu T: Thyroid storm: a Japanese perspective. Thyroid 2018; 28: 32–40.
86.
Burch HB, Wartofsky L: Life-threatening thyrotoxicosis: thyroid storm. Endocrinol Metab Clin North Am 1993; 22: 263–277.
87.
Akamizu T, Satoh T, Isozaki O, Suzuki A, Wakino S, Iburi T, Tsuboi K, Monden T, Kouki T, Otani H, Teramukai S, Uehara R, Nakamura Y, Nagai M, Mori M; Japan Thyroid Association: Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys. Thyroid 2012; 22: 661–679.
88.
Isozaki O, Satoh T, Wakino S, Suzuki A, Iburi T, Tsuboi K, Kanamoto N, Otani H, Furukawa Y, Teramukai S, Akamizu T: Treatment and management of thyroid storm: analysis of the nationwide surveys: the taskforce committee of the Japan Thyroid Association and Japan Endocrine Society for the establishment of diagnostic criteria and nationwide surveys for thyroid storm. Clin Endocrinol 2016; 84: 912–918.
89.
Bonnema SJ, Hegedus L: Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev 2012; 33: 920–980.
90.
Torring O, Tallstedt L, Wallin G, Lundell G, Ljunggren JG, Taube A, Saaf M, Hamberger B: Graves’ hyperthyroidism: treatment with antithyroid drugs, surgery, or radioiodine – a prospective, randomized study. Thyroid Study Group. J Clin Endocrinol Metab 1996; 81: 2986–2993.
91.
In H, Pearce EN, Wong AK, Burgess JF, McAneny DB, Rosen JE: Treatment options for Graves disease: a cost-effectiveness analysis. J Am Coll Surg 2009; 209: 170–179.e2.
92.
Zanocco K, Heller M, Elaraj D, Sturgeon C: Is subtotal thyroidectomy a cost-effective treatment for Graves disease? A cost-effectiveness analysis of the medical and surgical treatment options. Surgery 2012; 152: 164–172.
93.
Patel NN, Abraham P, Buscombe J, Vanderpump MP: The cost effectiveness of treatment modalities for thyrotoxicosis in a UK center. Thyroid 2006; 16: 593–598.
94.
Donovan PJ, McLeod DS, Little R, Gordon L: Cost-utility analysis comparing radioactive iodine, anti-thyroid drugs and total thyroidectomy for primary treatment of Graves’ disease. Eur J Endocrinol 2016; 175: 595–603.
95.
Cohen RZ, Felner EI, Heiss KF, Wyly JB, Muir AB: Outcomes analysis of radioactive iodine and total thyroidectomy for pediatric Graves’ disease. J Pediatr Endocrinol Metab 2016; 29: 319–325.
96.
Sawka AM, Lakra DC, Lea J, Alshehri B, Tsang RW, Brierley JD, Straus S, Thabane L, Gafni A, Ezzat S, George SR, Goldstein DP: A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol 2008; 69: 479–490.
97.
Nygaard B, Hegedus L, Gervil M, Hjalgrim H, Hansen BM, Soe-Jensen P, Hansen JM: Influence of compensated radioiodine therapy on thyroid volume and incidence of hypothyroidism in Graves’ disease. J Intern Med 1995; 238: 491–497.
98.
Sridama V, McCormick M, Kaplan EL, Fauchet R, DeGroot LJ: Long-term follow-up study of compensated low-dose 131I therapy for Graves’ disease. N Engl J Med 1984; 311: 426–432.
99.
Walter MA, Briel M, Christ-Crain M, Bonnema SJ, Connell J, Cooper DS, Bucher HC, Muller-Brand J, Muller B: Effects of antithyroid drugs on radioiodine treatment: systematic review and meta-analysis of randomised controlled trials. BMJ 2007; 334: 514.
100.
Brandt F, Thvilum M, Almind D, Christensen K, Green A, Hegedus L, Brix TH: Graves’ disease and toxic nodular goiter are both associated with increased mortality but differ with respect to the cause of death: a Danish population-based register study. Thyroid 2013; 23: 408–413.
101.
Schwensen CF, Brandt F, Hegedus L, Brix TH: Mortality in Graves’ orbitopathy is increased and influenced by gender, age and pre-existing morbidity: a nationwide Danish register study. Eur J Endocrinol 2017; 176: 669–676.
102.
Lillevang-Johansen M, Abrahamsen B, Jorgensen HL, Brix TH, Hegedus L: Excess mortality in treated and untreated hyperthyroidism is related to cumulative periods of low serum TSH. J Clin Endocrinol Metab 2017; 102: 2301–2309.
103.
Ron E, Doody MM, Becker DV, Brill AB, Curtis RE, Goldman MB, Harris BS 3rd, Hoffman DA, McConahey WM, Maxon HR, Preston-Martin S, Warshauer ME, Wong FL, Boice JD Jr: Cancer mortality following treatment for adult hyperthyroidism. Cooperative Thyrotoxicosis Therapy Follow-up Study Group. JAMA 1998; 280: 347–355.
104.
Bonnema SJ, Bennedbaek FN, Veje A, Marving J, Hegedus L: Propylthiouracil before 131I therapy of hyperthyroid diseases: effect on cure rate evaluated by a randomized clinical trial. J Clin Endocrinol Metab 2004; 89: 4439–4444.
105.
Bonnema SJ, Bennedbaek FN, Gram J, Veje A, Marving J, Hegedus L: Resumption of methimazole after 131I therapy of hyperthyroid diseases: effect on thyroid function and volume evaluated by a randomized clinical trial. Eur J Endocrinol 2003; 149: 485–492.
106.
Bartalena L, Marcocci C, Bogazzi F, Panicucci M, Lepri A, Pinchera A: Use of corticosteroids to prevent progression of Graves’ ophthalmopathy after radioiodine therapy for hyperthyroidism. N Engl J Med 1989; 321: 1349–1352.
107.
Jensen BE, Bonnema SJ, Hegedus L: Glucocorticoids do not influence the effect of radioiodine therapy in Graves’ disease. Eur J Endocrinol 2005; 153: 15–21.
108.
Burch HB, Burman KD, Cooper DS: A 2011 survey of clinical practice patterns in the management of Graves’ disease. J Clin Endocrinol Metab 2012; 97: 4549–4558.
109.
Bartalena L, Chiovato L, Vitti P: Management of hyperthyroidism due to Graves’ disease: frequently asked questions and answers (if any). J Endocrinol Invest 2016; 39: 1105–1114.
110.
Genovese BM, Noureldine SI, Gleeson EM, Tufano RP, Kandil E: What is the best definitive treatment for Graves’ disease? A systematic review of the existing literature. Ann Surg Oncol 2013; 20: 660–667.
111.
Guo Z, Yu P, Liu Z, Si Y, Jin M: Total thyroidectomy vs bilateral subtotal thyroidectomy in patients with Graves’ diseases: a meta-analysis of randomized clinical trials. Clin Endocrinol 2013; 79: 739–746.
112.
Sosa JA, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman R: The importance of surgeon experience for clinical and economic outcomes from thyroidectomy. Ann Surg 2008; 228: 320–330.
113.
Erbil Y, Ozluk Y, Giris M, Salmaslioglu A, Issever H, Barbaros U, Kapran Y, Ozarmagan S, Tezelman S: Effect of lugol solution on thyroid gland blood flow and microvessel density in the patients with Graves’ disease. J Clin Endocrinol Metab 2007; 92: 2182–2189.
114.
Edafe O, Antakia R, Laskar N, Uttley L, Balasubramanian SP: Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br J Surg 2014; 101: 307–320.
115.
Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, Perros P, Salvi M, Wiersinga WM; European Group on Graves Orbitopathy: The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy guidelines for the management of Graves’ orbitopathy. Eur Thyroid J 2016; 5: 9–26.
116.
Bartalena L, Macchia PE, Marcocci C, Salvi M, Vermiglio F: Effects of treatment modalities for Graves’ hyperthyroidism on Graves’ orbitopathy: a 2015 Italian Society of Endocrinology Consensus Statement. J Endocrinol Invest 2015; 38: 481–487.
117.
Bartalena L: The dilemma of how to manage Graves’ hyperthyroidism in patients with associated orbitopathy. J Clin Endocrinol Metab 2011; 96: 592–599.
118.
Laurberg P, Wallin G, Tallstedt L, Abraham-Nordling M, Lundell G, Torring O: TSH-receptor autoimmunity in Graves’ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol 2008; 158: 69–75.
119.
Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E, Bruno-Bossio G, Nardi M, Bartolomei MP, Lepri A, Rossi G, Martino E, Pinchera A: Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Engl J Med 1998; 338: 73–78.
120.
Karlsson F, Dahlberg P, Jansson R, Westermark K, Enoksson P: Importance of TSH receptor activation in the development of severe endocrine ophthalmopathy. Acta Endocrinol 1989; 121(suppl 2): 132–141.
121.
Bartalena L, Marcocci C, Bogazzi F, Panicucci M, Lepri A, Pinchera A: Use of corticosteroids to prevent progression of Graves’ ophthalmopathy after radioiodine therapy for hyperthyroidism. N Engl J Med 1989; 321: 1349–1352.
122.
Tallstedt L, Lundell G, Torring O, Wallin G, Ljunggren JG, Blomgren H, Taube A: Occurrence of ophthalmopathy after treatment for Graves’ hyperthyroidism. The Thyroid Study Group. N Engl J Med 1992; 326: 1733–1738.
123.
Traisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J, Hallengren B, Hedner P, Lantz M, Nystrom E, Ponjavic V, Taube A, Torring O, Wallin G, Asman P, Lundell G; Thyroid Study Group of TT 96: Thyroid-associated ophthalmopathy after treatment for Graves’ hyper­ t­hyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab 2009; 94: 3700–3707.
124.
Vannucchi G, Campi I, Covelli D, Dazzi D, Curro N, Simonetta S, Ratiglia R, Beck-Peccoz P, Salvi M: Graves’ orbitopathy activation after radioactive iodine therapy with and without steroid prophylaxis. J Clin Endocrinol Metab 2009; 94: 3381–3386.
125.
Tallstedt L, Lundell G, Blomgren H, Bring J: Does early administration of thyroxine reduce the development of Graves’ ophthalmopathy after radioiodine treatment? Eur J Endocrinol 1994; 130: 494–497.
126.
Perros P, Kendall-Taylor P, Neoh C, Frewin S, Dickinson J: A prospective study of the effects of radioiodine therapy for hyperthyroidism in patients with minimally active Graves’ ophthalmopathy. J Clin Endocrinol Metab 2005; 90: 5321–5323.
127.
Kung AW, Yau CC, Cheng A: The incidence of ophthalmopathy after radioiodine therapy for Graves’ disease: prognostic factors and the role of methimazole. J Clin Endocrinol Metab 1994; 79: 542–546.
128.
Lai A, Sassi L, Compri E, Marino F, Sivelli P, Piantanida E, Tanda ML, Bartalena L: Lower dose prednisone prevents radioiodine-associated exacerbation of initially mild or absent Graves’ orbitopathy: a retrospective cohort study. J Clin Endocrinol Metab 2010; 95: 1333–1337.
129.
Acharya SH, Avenell A, Philip S, Burr J, Bevan JS, Abraham P: Radioiodine therapy (RAI) for Graves’ disease (GD) and the effect on ophthalmopathy: a systematic review. Clin Endocrinol 2008; 69: 943–950.
130.
Shiber S, Stiebel-Kalish H, Shimon I, Grossman A, Robenshtok E: Glucocorticoid regimens for prevention of Graves’ ophthalmopathy progression following radioiodine treatment: systematic review and meta-analysis. Thyroid 2014; 24: 1515–1523.
131.
Marcocci C, Bruno-Bossio G, Manetti L, Tanda ML, Miccoli P, Iacconi P, Bartolomei MP, Nardi M, Pinchera A, Bartalena L: The course of Graves’ ophthalmopathy is not influenced by near total thyroidectomy: a case-control study. Clin Endocrinol 1999; 51: 503–508.
132.
Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, Altea MA, Nardi M, Pitz S, Boboridis K, Sivelli P, von Arx G, Mourits MP, Baldeschi L, Bencivelli W, Wiersinga W; European Group on Graves Orbitopathy: Selenium and the course of mild Graves’ orbitopathy. N Engl J Med 2011; 364: 1920–1931.
133.
Bartalena L, Tanda ML: Clinical practice: Graves’ ophthalmopathy. N Engl J Med 2009; 360: 994–1001.
134.
Krassas GE, Poppe K, Glinoer D: Thyroid function and human reproductive health. Endocr Rev 2010; 31: 702–755.
135.
Andersen SL, Olsen J, Carle A, Laurberg P: Hyperthyroidism incidence fluctuates widely in and around pregnancy and is at variance with some other autoimmune diseases: a Danish population-based study. J Clin Endocrinol Metab 2015; 100: 1164–1171.
136.
Laurberg P, Bournaud C, Karmisholt J, Orgiazzi J: Management of Graves’ hyperthyroidism in pregnancy: focus on both maternal and foetal thyroid function, and caution against surgical thyroidectomy in pregnancy. Eur J Endocrinol 2009; 160: 1–8.
137.
Andersen SL, Olsen J, Laurberg P: Antithyroid drug side effects in the population and in pregnancy. J Clin Endocrinol Metab 2016; 101: 1606–1614.
138.
Alexander EK, Larsen PR: High dose of 131I therapy for the treatment of hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab 2002; 87: 1073–1077.
139.
Nicholas WC, Fischer RG, Stevenson RA, Bass JD: Single daily dose of methimazole compared to every 8 hours propylthiouracil in the treatment of hyperthyroidism. South Med J 1995; 88: 973–976.
140.
Nakamura H, Noh JY, Itoh K, Fukata S, Miyauchi A, Hamada N: Comparison of methimazole and propylthiouracil in patients with hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab 2007; 92: 2157–2162.
141.
Korelitz JJ, McNally DL, Masters MN, Li SX, Xu Y, Rivkees SA: Prevalence of thyrotoxicosis, antithyroid medication use, and complications among pregnant women in the United States. Thyroid 2013; 23: 758–765.
142.
Andersen SL, Olsen J, Wu CS, Laurberg P: Birth defects after early pregnancy use of antithyroid drugs: a Danish nationwide study. J Clin Endocrinol Metab 2013; 98: 4373–4381.
143.
Rubin PC: Current concepts: beta-blockers in pregnancy. N Engl J Med 1981; 305: 1323–1326.
144.
Momotani N, Hisaoka T, Noh J, Ishikawa N, Ito K: Effects of iodine on thyroid status of fetus versus mother in treatment of Graves’ disease complicated by pregnancy. J Clin Endocrinol Metab 1992; 75: 738–744.
145.
Nedrebo BG, Holm PI, Uhlving S, Sorheim JI, Skeie S, Eide GE, Husebye ES, Lien EA, Aanderud S: Predictors of outcome and comparison of different drug regimens for the prevention of relapse in patients with Graves’ disease. Eur J Endocrinol 2002; 147: 583–589.
146.
Laurberg P, Andersen SL: Therapy of endocrine disease: antithyroid drug use in early pregnancy and birth defects: time windows of relative safety and high risk? Eur J Endocrinol 2014; 171:R13–R20.
147.
Laurberg P: Remission of Graves’ disease during anti-thyroid drug therapy: time to reconsider the mechanism? Eur J Endocrinol 2006; 155: 783–786.
148.
Bliddal S, Rasmussen AK, Sundberg K, Brocks V, Feldt-Rasmussen U: Antithyroid drug-induced fetal goitrous hypothyroidism. Nat Rev Endocrinol 2011; 7: 396–406.
149.
McKenzie JM, Zakarija M: Fetal and neonatal hyperthyroidism and hypothyroidism due to maternal TSH receptor antibodies. Thyroid 1992; 2: 155–159.
150.
Abeillon-du Payrat J, Chikh K, Bossard N, Bretones P, Gaucherand P, Claris O, Charrie A, Raverot V, Orgiazzi J, Borson-Chazot F, Bournaud C: Predictive value of maternal second-generation thyroid-binding inhibitory immunoglobulin assay for neonatal autoimmune hyperthyroidism. Eur J Endocrinol 2014; 171: 451–460.
151.
Cove DH, Johnston P: Fetal hyperthyroidism: experience of treatment in four siblings. Lancet 1985; 1: 430–432.
152.
Amino N, Tanizawa O, Mori H, Iwatani Y, Yamada T, Kurachi K, Kumahara Y, Miyai K: Aggravation of thyrotoxicosis in early pregnancy and after delivery in Graves’ disease. J Clin Endocrinol Metab 1982; 55: 108–112.
153.
Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, Grobman WA, Laur­berg P, Lazarus JH, Mandel SJ, Peeters RP, Sullivan S: 2017 guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017; 27: 315–389.
154.
Mandel SJ, Cooper DS: The use of antithyroid drugs in pregnancy and lactation. J Clin Endocrinol Metab 2001; 86: 2354–2359.
155.
Pearce SH: Spontaneous reporting of adverse reactions to carbimazole and propylthiouracil in the UK. Clin Endocrinol 2004; 61: 589–594.
156.
Perros P, Crombie AL, Matthews JN, Kendall-Taylor P: Age and gender influence the severity of thyroid-associated ophthalmopathy: a study of 101 patients attending a combined thyroid-eye clinic. Clin Endocrinol 1993; 38: 367–372.
157.
Leger J, Gelwane G, Kaguelidou F, Benmerad M, Alberti C; French Childhood Graves’ Disease Study Group: Positive impact of long-term antithyroid drug treatment on the outcome of children with Graves’ disease: national long-term cohort study. J Clin Endocrinol Metab 2012; 97: 110–119.
158.
Ohye H, Minagawa A, Noh JY, Mukasa K, Kunii Y, Watanabe N, Matsumoto M, Suzuki M, Yoshihara A, Ito K, Ito K: Antithyroid drug treatment for graves’ disease in children: a long-term retrospective study at a single institution. Thyroid 2014; 24: 200–207.
159.
Rivkees SA, Szarfman A: Dissimilar hepatotoxicity profiles of propylthiouracil and methimazole in children. J Clin Endocrinol Metab 2010; 95: 3260–3267.
160.
Ma C, Kuang A, Xie J, Liu G: Radioiodine treatment for pediatric Graves’ disease. Cochrane Database Syst Rev 2008; 3:CD006294.
161.
Coles AJ, Wing M, Smith S, Coraddu F, Greer S, Taylor C, Weetman A, Hale G, Chatterjee VK, Waldmann H, Compston A: Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 1999; 354: 1691–1695.
162.
Chen F, Day SL, Metcalfe RA, Sethi G, Kapembwa MS, Brook MG, Churchill D, de Ruiter A, Robinson S, Lacey CJ, Weetman AP: Characteristics of autoimmune thyroid disease occurring as a late complication of immune reconstitution in patients with advanced human immunodeficiency virus (HIV) disease. Medicine 2005; 84: 98–106.
163.
Weetman AP: Graves’ disease following immune reconstitution or immunomodulatory treatment: should we manage it any differently? Clin Endocrinol 2014; 80: 629–632.
164.
Furmaniak J, Sanders J, Nunez Miguel R, Rees Smith B: Mechanisms of action of TSHR autoantibodies. Horm Metab Res 2015; 47: 735–752.
165.
Gershengorn MC, Neumann S: Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab 2012; 97: 4287–4292.
166.
El Fassi D, Nielsen CH, Hasselbalch HC, Hegedus L: The rationale for B lymphocyte depletion in Graves’ disease: monoclo nal anti-CD20 antibody therapy as a novel treatment option. Eur J Endocrinol 2006; 154: 623–632.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.