Due to the high variance in available protocols on iodide-131 (131I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of 131I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and 99mTc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) 131I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) 131I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high 131I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) 131I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. 99mTc-pertechnetate scintigraphy revealed absence of thyroidal 99mTc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene.

1.
Spitzweg C, Morris JC: The sodium iodide symporter: its pathophysiological and therapeutic implications. Clin Endocrinol (Oxf) 2002;57:559-574.
[PubMed]
2.
Hamilton JG: The use of radioactive tracers in biology and medicine. Radiology 1942;39:541-572.
3.
Gorbman A: Effects of radiotoxic dosages of I131 upon thyroid and contiguous tissues in mice. Proc Soc Exp Biol Med 1947;66:212-213.
[PubMed]
4.
Gorbman A: Functional and structural changes consequent to high dosages of radioactive iodine. J Clin Endocrinol Metab 1950;10:1177-1191.
[PubMed]
5.
Sloviter HA: The effect of complete ablation of thyroid tissue by radioactive iodine on the survival of tumor-bearing mice. Cancer Res 1951;11:447-449.
[PubMed]
6.
Silberberg R, Silberberg M: Skeletal effects of radio-iodine induced thyroid deficiency in mice as influenced by sex, age and strain. Am J Anat 1954;95:263-289.
[PubMed]
7.
Kumar MS, Chiang T, Deodhar SD: Enhancing effect of thyroxine on tumor growth and metastases in syngeneic mouse tumor systems. Cancer Res 1979;39:3515-3518.
[PubMed]
8.
Ross DS, Downing MF, Chin WW, Kieffer JD, Ridgway EC: Divergent changes in murine pituitary concentration of free alpha- and thyrotropin beta-subunits in hypothyroidism and after thyroxine administration. Endocrinology 1983;112:187-193.
[PubMed]
9.
Shupnik MA, Chin WW, Ross DS, Downing MF, Habener JF, Ridgway EC: Regulation by thyroxine of the mRNA encoding the alpha subunit of mouse thyrotropin. J Biol Chem 1983;258:15120-15124.
[PubMed]
10.
Kasuga Y, Matsubayashi S, Sakatsume Y, Akasu F, Jamieson C, Volpé R: The effect of xenotransplantation of human thyroid tissue following radioactive iodine-induced thyroid ablation on thyroid function in the nude mouse. Clin Invest Med 1991;14:277-281.
[PubMed]
11.
Abel ED, Boers ME, Pazos-Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F: Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 1999;104:291-300.
[PubMed]
12.
Barca-Mayo O, Liao XH, DiCosmo C, Dumitrescu A, Moreno-Vinasco L, Wade MS, Sammani S, Mirzapoiazova T, Garcia JG, Refetoff S, Weiss RE: Role of type 2 deiodinase in response to acute lung injury (ALI) in mice. Proc Natl Acad Sci USA 2011;108:E1321-E1329.
[PubMed]
13.
Klutz K, Russ V, Willhauck MJ, Wunderlich N, Zach C, Gildehaus FJ, Göke B, Wagner E, Ogris M, Spitzweg C: Targeted radioiodine therapy of neuroblastoma tumors following systemic nonviral delivery of the sodium iodide symporter gene. Clin Cancer Res 2009;15:6079-6086.
[PubMed]
14.
Klutz K, Schaffert D, Willhauck MJ, Grünwald GK, Haase R, Wunderlich N, Zach C, Gildehaus FJ, Senekowitsch-Schmidtke R, Göke B, Wagner E, Ogris M, Spitzweg C: Epidermal growth factor receptor-targeted (131)I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol Ther 2011;19:676-685.
[PubMed]
15.
Klutz K, Willhauck MJ, Wunderlich N, Zach C, Anton M, Senekowitsch-Schmidtke R, Göke B, Spitzweg C: Sodium iodide symporter (NIS)-mediated radionuclide ((131)I, (188)Re) therapy of liver cancer after transcriptionally targeted intratumoral in vivo NIS gene delivery. Hum Gene Ther 2011;22:1403-1412.
[PubMed]
16.
Klutz K, Willhauck MJ, Dohmen C, Wunderlich N, Knoop K, Zach C, Senekowitsch-Schmidtke R, Gildehaus FJ, Ziegler S, Fürst S, Göke B, Wagner E, Ogris M, Spitzweg C: Image-guided tumor-selective radioiodine therapy of liver cancer after systemic nonviral delivery of the sodium iodide symporter gene. Hum Gene Ther 2011;22:1563-1574.
[PubMed]
17.
Knoop K, Kolokythas M, Klutz K, Willhauck MJ, Wunderlich N, Draganovici D, Zach C, Gildehaus FJ, Böning G, Göke B, Wagner E, Nelson PJ, Spitzweg C: Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol Ther 2011;19:1704-1713.
[PubMed]
18.
Knoop K, Schwenk N, Dolp P, Willhauck MJ, Zischek C, Zach C, Hacker M, Göke B, Wagner E, Nelson PJ, Spitzweg C: Stromal targeting of sodium iodide symporter using mesenchymal stem cells allows enhanced imaging and therapy of hepatocellular carcinoma. Hum Gene Ther 2013;24:306-316.
[PubMed]
19.
Grünwald GK, Klutz K, Willhauck MJ, Schwenk N, Senekowitsch-Schmidtke R, Schwaiger M, Zach C, Göke B, Holm PS, Spitzweg C: Sodium iodide symporter (NIS)-mediated radiovirotherapy of hepatocellular cancer using a conditionally replicating adenovirus. Gene Ther 2013;20:625-633.
[PubMed]
20.
Grünwald GK, Vetter A, Klutz K, Willhauck MJ, Schwenk N, Senekowitsch-Schmidtke R, Schwaiger M, Zach C, Wagner E, Göke B, Holm PS, Ogris M, Spitzweg C: Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J Nucl Med 2013;54:1450-1457.
[PubMed]
21.
Grünwald GK, Vetter A, Klutz K, Willhauck MJ, Schwenk N, Senekowitsch-Schmidtke R, Schwaiger M, Zach C, Wagner E, Göke B, Holm PS, Ogris M, Spitzweg C: EGFR-targeted adenovirus dendrimer coating for improved systemic delivery of the theranostic NIS gene. Mol Ther Nucleic Acids 2013;2:e131.
[PubMed]
22.
Trujillo MA, Oneal MJ, McDonough S, Qin R, Morris JC: A probasin promoter, conditionally replicating adenovirus that expresses the sodium iodide symporter (NIS) for radiovirotherapy of prostate cancer. Gene Ther 2010;17:1325-1332.
[PubMed]
23.
Baril P, Martin-Duque P, Vassaux G: Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. Br J Pharmacol 2010;159:761-771.
[PubMed]
24.
Penheiter AR, Russell SJ, Carlson SK: The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 2012;12:33-47.
[PubMed]
25.
Spitzweg C, Joba W, Schriever K, Goellner JR, Morris JC, Heufelder AE: Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands. J Clin Endocrinol Metab 1999;84:4178-4184.
[PubMed]
26.
Bandyopadhyay U, Biswas K, Banerjee RK: Extrathyroidal actions of antithyroid thionamides. Toxicol Lett 2002;128:117-127.
[PubMed]
27.
Cano-Europa E, Blas-Valdivia V, Franco- Colin M, Gallardo-Casas CA, Ortiz-Butrón R: Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney. Acta Histochem 2011;113:1-5.
[PubMed]
28.
Spitzweg C, Joba W, Morris JC, Heufelder AE: Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid 1999;9:821-830.
[PubMed]
29.
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR: American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014;24:88-168.
[PubMed]
30.
Dingli D, Diaz RM, Bergert ER, O'Connor MK, Morris JC, Russell SJ: Genetically targeted radiotherapy for multiple myeloma. Blood 2003;102:489-496.
[PubMed]
31.
Hervas F, Morreale de Escobar G, Escobar Del Rey F: Rapid effects of single small doses of L-thyroxine and triiodo-L-thyronine on growth hormone, as studied in the rat by radioimmunoassy. Endocrinology 1975;97:91-101.
[PubMed]
32.
Zavacki AM, Ying H, Christoffolete MA, Aerts G, So E, Harney JW, Cheng SY, Larsen PR, Bianco AC: Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology 2005;146:1568-1575.
[PubMed]
33.
Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, Refetoff S, Peremans K, Manto M, Kyba M, Costagliola S: Generation of functional thyroid from embryonic stem cells. Nature 2012;491:66-71.
[PubMed]
34.
Boschi F, Pagliazzi M, Rossi B, Cecchini MP, Gorgoni G, Salgarello M, Spinelli AE: Small-animal radionuclide luminescence imaging of thyroid and salivary glands with Tc99m-pertechnetate. J Biomed Opt 2013;18:76005.
[PubMed]
35.
Choi JS, Park IS, Kim SK, Lim JY, Kim YM: Morphometric and functional changes of salivary gland dysfunction after radioactive iodine ablation in a murine model. Thyroid 2013;23:1445-1451.
[PubMed]
You do not currently have access to this content.