Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.

1.
Rao GS, Eckel J, Rao ML, Breuer H: Uptake of thyroid hormone by isolated rat liver cells. Biochem Biophys Res Commun 1976;73:98-104.
2.
Krenning EP, Docter R, Bernard HF, Visser TJ, Hennemann G: Active transport of triiodothyronine (T3) into isolated rat liver cells. FEBS Lett 1978;91:113-116.
3.
Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ: Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 2001;22:451-476.
4.
Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ: Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003;278:40128-40135.
5.
Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, Barrett TG, Mancilla EE, Svensson J, Kester MH, Kuiper GG, Balkassmi S, Uitterlinden AG, Koehrle J, Rodien P, Halestrap AP, Visser TJ: Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 2004;364:1435-1437.
6.
Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S: A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 2004;74:168-175.
7.
Allan W, Herndon CN, Dudley FC: Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microcephaly. Am J Ment Defic 1944;48:325-334.
8.
Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA, Echeverri R, Lubs HA, Voeller K, Simensen RJ, Stevenson RE: Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 gene. Am J Hum Genet 2005;77:41-53.
9.
Fu J, Refetoff S, Dumitrescu AM: Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr Opin Endocrinol Diabetes Obes 2013;20:434-440.
10.
Friesema EC, Jansen J, Heuer H, Trajkovic M, Bauer K, Visser TJ: Mechanisms of disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nat Clin Pract Endocrinol Metab 2006;2:512-523.
11.
Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S: Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (MCT) 8-deficient mice. Endocrinology 2006;147:4036-4043.
12.
Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H: Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 2007;117:627-635.
13.
Wirth EK, Roth S, Blechschmidt C, Hölter SM, Becker L, Racz I, Zimmer A, Klopstock T, Gailus-Durner V, Fuchs H, Wurst W, Naumann T, Bräuer A, de Angelis MH, Köhrle J, Grüters A, Schweizer U: Neuronal 3′,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in MCT8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci 2009;29:9439-9449.
14.
Trajkovic-Arsic M, Visser TJ, Darras VM, Friesema EC, Schlott B, Mittag J, Bauer K, Heuer H: Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice. Endocrinology 2010;151:802-809.
15.
Trajkovic-Arsic M, Muller J, Darras VM, Groba C, Lee S, Weih D, Bauer K, Visser TJ, Heuer H: Impact of monocarboxylate transporter-8 deficiency on the hypothalamus-pituitary-thyroid axis in mice. Endocrinology 2010;151:5053-5062.
16.
Heuer H, Maier MK, Iden S, Mittag J, Friesema EC, Visser TJ, Bauer K: The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 2005;146:1701-1706.
17.
Wirth EK, Sheu SY, Chiu-Ugalde J, Sapin R, Klein MO, Mossbrugger I, Quintanilla-Martinez L, de Angelis MH, Krude H, Riebel T, Rothe K, Köhrle J, Schmid KW, Schweizer U, Grüters A: Monocarboxylate transporter 8 deficiency: altered thyroid morphology and persistent high triiodothyronine/thyroxine ratio after thyroidectomy. Eur J Endocrinol 2011;165:555-561.
18.
Braun D, Kinne A, Brauer AU, Sapin R, Klein MO, Köhrle J, Wirth EK, Schweizer U: Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells. Glia 2011;59:463-471.
19.
Braun D, Wirth EK, Wohlgemuth F, Reix N, Klein MO, Grüters A, Köhrle J, Schweizer U: Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem J 2011;439:249-255.
20.
Mayerl S, Muller J, Bauer R, Richert S, Kassmann CM, Darras VM, Buder K, Boelen A, Visser TJ, Heuer H: Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 2014;124:1987-1999.
21.
Heuer H, Visser TJ: The pathophysiological consequences of thyroid hormone transporter deficiencies: insights from mouse models. Biochim Biophys Acta 2013;1830:3974-3978.
22.
Dumitrescu AM, Refetoff S: The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 2013;1830:3987-4003.
23.
Schweizer U, Köhrle J: Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta 2013;1830:3965-3973.
24.
Shi Y: Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 2013;42:51-72.
25.
Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S: Structure and mechanism of the lactose permease of Escherichia coli. Science 2003;301:610-615.
26.
Huang Y, Lemieux MJ, Song J, Auer M, Wang DN: Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003;301:616-620.
27.
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N: Crystal structure of the human glucose transporter GLUT1. Nature 2014;510:121-125.
28.
Yan N: Structural advances for the major facilitator superfamily transporters. Trends Biochem Sci 2013;38:151-159.
29.
Blake CC, Oatley SJ: Protein-DNA and protein-hormone interactions in prealbumin: a model of the thyroid hormone nuclear receptor? Nature 1977;268:115-120.
30.
Wojtczak A, Cody V, Luft JR, Pangborn W: Structures of human transthyretin complexed with thyroxine at 2.0 a resolution and 3′,5′-dinitro-N-acetyl-L-thyronine at 2.2 Å resolution. Acta Crystallogr D Biol Crystallogr 1996;52:758-765.
31.
Wojtczak A, Cody V, Luft JR, Pangborn W: Structure of rat transthyretin (RTTR) complex with thyroxine at 2.5 Å resolution: first non-biased insight into thyroxine binding reveals different hormone orientation in two binding sites. Acta Crystallogr D Biol Crystallogr 2001;57:1061-1070.
32.
Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S: Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc Natl Acad Sci USA 2003;100:6440-6445.
33.
Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S: An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun 1994;202:781-787.
34.
Greenberg SM, Ferrara AM, Nicholas ES, Dumitrescu AM, Cody V, Weiss RE, Refetoff S: A novel mutation in the albumin gene (R218S) causing familial dysalbuminemic hyperthyroxinemia in a family of Bangladeshi extraction. Thyroid 2014;24:945-950.
35.
Ruiz M, Rajatanavin R, Young RA, Taylor C, Brown R, Braverman LE, Ingbar SH: Familial dysalbuminemic hyperthyroxinemia: a syndrome that can be confused with thyrotoxicosis. N Engl J Med 1982;306:635-639.
36.
Hennemann G, Docter R, Krenning EP, Bos G, Otten M, Visser TJ: Raised total thyroxine and free thyroxine index but normal free thyroxine. A serum abnormality due to inherited increased affinity of iodothyronines for serum binding protein. Lancet 1979;1:639-642.
37.
Zhou A, Wei Z, Read RJ, Carrell RW: Structural mechanism for the carriage and release of thyroxine in the blood. Proc Natl Acad Sci USA 2006;103:13321-13326.
38.
Nascimento AS, Dias SM, Nunes FM, Aparicio R, Ambrosio AL, Bleicher L, Figueira AC, Santos MA, de Oliveira NM, Fischer H, Togashi M, Craievich AF, Garratt RC, Baxter JD, Webb P, Polikarpov I: Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. J Mol Biol 2006;360:586-598.
39.
Souza PC, Puhl AC, Martinez L, Aparicio R, Nascimento AS, Figueira AC, Nguyen P, Webb P, Skaf MS, Polikarpov I: Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol Endocrinol 2014;28:534-545.
40.
Bianco AC, Kim BW: Deiodinases: Implications of the local control of thyroid hormone action. J Clin Invest 2006;116:2571-2579.
41.
Schweizer U, Schlicker C, Braun D, Köhrle J, Steegborn C: The crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proc Natl Acad Sci USA 2014;111:10526-10531.
42.
Kleinau G, Schweizer U, Kinne A, Kohrle J, Gruters A, Krude H, Biebermann H: Insights into molecular properties of the human monocarboxylate transporter 8 by combining functional with structural information. Thyroid Res 2011;4(suppl 1):S4.
43.
Kinne A, Kleinau G, Hoefig CS, Grüters A, Köhrle J, Krause G, Schweizer U: Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 2010;285:28054-28063.
44.
Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ, Krenning EP, Hennemann G, Visser TJ: Identification of thyroid hormone transporters. Biochem Biophys Res Commun 1999;254:497-501.
45.
Zhou X, Levin EJ, Pan Y, McCoy JG, Sharma R, Kloss B, Bruni R, Quick M, Zhou M: Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 2014;505:569-573.
46.
Blondeau JP, Beslin A, Chantoux F, Francon J: Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J Neurochem 1993;60:1407-1413.
47.
Friesema EC, Docter R, Moerings EP, Verrey F, Krenning EP, Hennemann G, Visser TJ: Thyroid hormone transport by the heterodimeric human system L amino acid transporter. Endocrinology 2001;142:4339-4348.
48.
Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA: Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T-cell differentiation. Nat Immunol 2013;14:500-508.
49.
Geier EG, Schlessinger A, Fan H, Gable JE, Irwin JJ, Sali A, Giacomini KM: Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1. Proc Natl Acad Sci USA 2013;110:5480-5485.
50.
Kinne A, Hinz K, Wittner M, Krause G: Involvement of LAT2 in the transport of 3,30-T2 across the plasma membrane and first structural insights into transport mechanisms by homology model generation. 16th European Congress of Endocrinology, Wroclaw. Endocr Abstr 2014;35:P1081.
51.
Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ: Expression cloning of a rat liver Na+-independent organic anion transporter. Proc Natl Acad Sci USA 1994;91:133-137.
52.
Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M, Nomura H, Hebert SC, Matsuno S, Kondo H, Yawo H: Molecular characterization and tissue distribution of a new organic anion transporter subtype (OATP3) that transports thyroid hormones and taurocholate and comparison with OATP2. J Biol Chem 1998;273:22395-22401.
53.
Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, Onogawa T, Suzuki T, Asano N, Tanemoto M, Seki M, Shiiba K, Suzuki M, Kondo Y, Nunoki K, Shimosegawa T, Iinuma K, Ito S, Matsuno S, Abe T: Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 2001;142:2005-2012.
54.
Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, Chaki T, Masuda S, Tokui T, Eto N, Abe M, Satoh F, Unno M, Hishinuma T, Inui K, Ito S, Goto J, Abe T: Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA 2004;101:3569-3574.
55.
Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ: Identification of a novel human organic anion-transporting polypeptide as a high-affinity thyroxine transporter. Mol Endocrinol 2002;16:2283-2296.
56.
Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, Sugiyama Y: Functional characterization of rat brain-specific organic anion transporter (OATP14) at the blood-brain barrier: high-affinity transporter for thyroxine. J Biol Chem 2003;278:43489-43495.
57.
Tohyama K, Kusuhara H, Sugiyama Y: Involvement of multispecific organic anion transporter, OATP14 (SLC21A14), in the transport of thyroxine across the blood-brain barrier. Endocrinology 2004;145:4384-4391.
58.
Westholm DE, Marold JD, Viken KJ, Duerst AH, Anderson GW, Rumbley JN: Evidence of evolutionary conservation of function between the thyroxine transporter OATP1C1 and major facilitator superfamily members. Endocrinology 2010;151:5941-5951.
59.
Halestrap AP, Meredith D: The SLC16 gene family-from monocarboxylate transporters to aromatic amino acid transporters and beyond. Pflugers Arch 2004;447:619-628.
60.
Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS: Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 1994;76:865-873.
61.
Visser WE, Philp NJ, van Dijk TB, Klootwijk W, Friesema EC, Jansen J, Beesley PW, Ianculescu AG, Visser TJ: Evidence for a homodimeric structure of human monocarboxylate transporter 8. Endocrinology 2009;150:5163-5170.
62.
Biebermann H, Ambrugger P, Tarnow P, von Moers A, Schweizer U, Grueters A: Extended clinical phenotype, endocrine investigations and functional studies of a loss-of-function mutation A150V in the thyroid hormone-specific transporter MCT8. Eur J Endocrinol 2005;153:359-366.
63.
Friesema EC, Jansen J, Jachtenberg JW, Visser WE, Kester MH, Visser TJ: Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol 2008;22:1357-1369.
64.
Braun D, Lelios I, Krause G, Schweizer U: Histidines in potential substrate recognition sites affect thyroid hormone transport by monocarboxylate transporter 8. Endocrinology 2013;154:2553-2561.
65.
Roth S, Kinne A, Schweizer U: The tricyclic antidepressant desipramine inhibits T3 import into primary neurons. Neurosci Lett 2010;478:5-8.
66.
Braun D, Kim TD, Le Coutre P, Kohrle J, Hershman JM, Schweizer U: Tyrosine kinase inhibitors noncompetitively inhibit MCT8-mediated iodothyronine transport. J Clin Endocrinol Metab 2012;97:E100-E105.
67.
Braun D, Schweizer U: Authentic bosutinib inhibits triiodothyronine transport by monocarboxylate transporter 8. Thyroid 2014;24:926-927.
68.
Groeneweg S, Friesema EC, Kersseboom S, Klootwijk W, Visser WE, Peeters RP, Visser TJ: The role of Arg445 and Asp498 in the human thyroid hormone transporter MCT8. Endocrinology 2014;155:618-626.
69.
Manoharan C, Wilson MC, Sessions RB, Halestrap AP: The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity. Mol Membr Biol 2006;23:486-498.
70.
Groeneweg S, Lima de Souza EC, Visser WE, Peeters RP, Visser TJ: Importance of His192 in the human thyroid hormone transporter MCT8 for substrate recognition. Endocrinology 2013;154:2525-2532.
71.
Lima de Souza EC, Groeneweg S, Visser WE, Peeters RP, Visser TJ: Importance of cysteine residues in the thyroid hormone transporter MCT8. Endocrinology 2013;154:1948-1955.
72.
Schweizer U, Braun D, Johannes J: Training MCT10 to transport thyroxine: structure-based targeted mutations in MCT10. 16th European Congress of Endocrinology, Wroclaw. Endocr Abstr 2014;35:OC7.4.
73.
Jansen J, Friesema EC, Kester MH, Milici C, Reeser M, Gruters A, Barrett TG, Mancilla EE, Svensson J, Wemeau JL, Busi da Silva Canalli MH, Lundgren J, McEntagart ME, Hopper N, Arts WF, Visser TJ: Functional analysis of monocarboxylate transporter 8 mutations identified in patients with X-linked psychomotor retardation and elevated serum triiodothyronine. J Clin Endocrinol Metab 2007;92:2378-2381.
74.
Jansen J, Friesema EC, Kester MH, Schwartz CE, Visser TJ: Genotype-phenotype relationship in patients with mutations in thyroid hormone transporter MCT8. Endocrinology 2008;149:2184-2190.
75.
Visser WE, Jansen J, Friesema EC, Kester MH, Mancilla E, Lundgren J, van der Knaap MS, Lunsing RJ, Brouwer OF, Visser TJ: Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Hum Mutat 2009;30:29-38.
76.
Kinne A, Roth S, Biebermann H, Köhrle J, Grüters A, Schweizer U: Surface translocation and tri-iodothyronine uptake of mutant MCT8 proteins are cell type-dependent. J Mol Endocrinol 2009;43:263-271.
77.
Capri Y, Friesema EC, Kersseboom S, Touraine R, Monnier A, Eymard-Pierre E, Des Portes V, De Michele G, Brady AF, Boespflug-Tanguy O, Visser TJ, Vaurs-Barriere C: Relevance of different cellular models in determining the effects of mutations on SLC16A2/MCT8 thyroid hormone transporter function and genotype-phenotype correlation. Hum Mutat 2013;34:1018-1025.
78.
Kersseboom S, Kremers GJ, Friesema EC, Visser WE, Klootwijk W, Peeters RP, Visser TJ: Mutations in MCT8 in patients with Allan-Herndon-Dudley syndrome affecting its cellular distribution. Mol Endocrinol 2013;27:801-813.
79.
Snider C, Jayasinghe S, Hristova K, White SH: Mpex: a tool for exploring membrane proteins. Protein Sci 2009;18:2624-2628.
80.
Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G: Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007;450:1026-1030.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.