Thyroid hormones exert widespread and complex actions in almost all tissues during development, throughout childhood and in adults. The skeleton is an important T3-target tissue that exemplifies these processes, and yet understanding of the specific cellular and molecular mechanisms of T3 action in bone and cartilage remains incomplete. Here, the skeleton is considered as a T3-target tissue. The actions of thyroid hormones during skeletal development and in chondrocytes and growth plate cartilage during post-natal linear growth are outlined. The physiological importance of these actions are discussed in relation to patients with autosomal dominant mutations in genes encoding the thyroid hormone receptors TRα1 and TRβ, and in mice harbouring deletions or mutations of the orthologous genes. The role of thyroid hormones and the control of T3 action in bone turnover and maintenance are also outlined, and T3 action in bone-forming osteoblasts and bone-resorbing osteoclasts discussed. The physiological and functional consequences of T3 action in bone are considered in relation to mutant mouse models and to effects on bone mineral density and fracture susceptibility in humans. Finally, new studies identifying a putative role for thyroid hormone metabolism in articular cartilage maintenance and the pathogenesis of osteoarthritis are considered. The pharmacological context of these new findings is discussed, emphasising the importance of this emerging field of study in thyroid hormone pathophysiology.

1.
Bianco AC, Kim BW: Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 2006;116:2571-2579.
2.
Kopp P: The TSH receptor and its role in thyroid disease. Cell Mol Life Sci 2001;58:1301-1322.
3.
Van der Deure W, Peeters R, Visser T: Molecular aspects of thyroid hormone transporters, including MCT8, MCT10 and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol 2010;44:1-11.
4.
Bianco AC, Larsen PR: Cellular and structural biology of the deiodinases. Thyroid 2005;15:777-786.
5.
Harvey CB, Williams GR: Mechanism of thyroid hormone action. Thyroid 2002;12:441-446.
6.
Forrest D, Sjoberg M, Vennstrom B: Contrasting developmental and tissue-specific expression of α- and β-thyroid hormone receptor genes. EMBO J 1990;9:1519-1528.
7.
Abel ED, Boers ME, Pazos-Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F: Divergent roles for thyroid hormone receptor β-isoforms in the endocrine axis and auditory system. J Clin Invest 1999;104:291-300.
8.
Cheng SY, Leonard JL, Davis PJ: Molecular aspects of thyroid hormone actions. Endocr Rev 2010;31:139-170.
9.
Astapova I, Lee LJ, Morales C, Tauber S, Bilban M, Hollenberg AN: The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. Proc Natl Acad Sci USA 2008;105:19544-19549.
10.
Astapova I, Vella KR, Ramadoss P, Holtz KA, Rodwin BA, Liao XH, Weiss RE, Rosenberg MA, Rosenzweig A, Hollenberg AN: The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis. Mol Endocrinol 2011;25:212-224.
11.
Weiss RE, Gehin M, Xu J, Sadow PM, O'Malley BW, Chambon P, Refetoff S: Thyroid function in mice with compound heterozygous and homozygous disruptions of SRC-1 and TIF-2 coactivators: evidence for haploinsufficiency. Endocrinology 2002;143:1554-1557.
12.
Weiss RE, Xu J, Ning G, Pohlenz J, O'Malley BW, Refetoff S: Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J 1999;18:1900-1904.
13.
Capelo LP, Beber EH, Fonseca TL, Gouveia CH: The monocarboxylate transporter 8 and L-type amino acid transporters 1 and 2 are expressed in mouse skeletons and in osteoblastic MC3T3-E1 cells. Thyroid 2009;19:171-180.
14.
Williams AJ, Robson H, Kester MH, van Leeuwen JP, Shalet SM, Visser TJ, Williams GR: Iodothyronine deiodinase enzyme activities in bone. Bone 2008;43:126-134.
15.
Abe S, Namba N, Abe M, Fujiwara M, Aikawa T, Kogo M, Ozono K: Monocarboxylate transporter 10 functions as a thyroid hormone transporter in chondrocytes. Endocrinology 2012;153:4049-4058.
16.
Waung JA, Bassett JH, Williams GR: Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab 2012;23:155-162.
17.
Bassett JH, Boyde A, Howell PG, Bassett RH, Galliford TM, Archanco M, Evans H, Lawson MA, Croucher P, St Germain DL, Galton VA, Williams GR: Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci USA 2010;107:7604-7609.
18.
Capelo LP, Beber EH, Huang SA, Zorn TM, Bianco AC, Gouveia CH: Deiodinase-mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton. Bone 2008;43:921-930.
19.
Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ: Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006;126:789-799.
20.
O'Shea PJ, Harvey CB, Suzuki H, Kaneshige M, Kaneshige K, Cheng SY, Williams GR: A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 2003;17:1410-1424.
21.
Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389-406.
22.
Kronenberg HM: Developmental regulation of the growth plate. Nature 2003;423:332-336.
23.
Robson H, Siebler T, Stevens DA, Shalet SM, Williams GR: Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 2000;141:3887-3897.
24.
Ballock RT, Reddi AH: Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J Cell Biol 1994;126:1311-1318.
25.
Ballock RT, Zhou X, Mink LM, Chen DH, Mita BC, Stewart MC: Expression of cyclin-dependent kinase inhibitors in epiphyseal chondrocytes induced to terminally differentiate with thyroid hormone. Endocrinology 2000;141:4552-4557.
26.
Ishikawa Y, Genge BR, Wuthier RE, Wu LN: Thyroid hormone inhibits growth and stimulates terminal differentiation of epiphyseal growth plate chondrocytes. J Bone Miner Res 1998;13:1398-1411.
27.
Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ: Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996;273:613-622.
28.
Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002;3:439-449.
29.
St-Jacques B, Hammerschmidt M, McMahon AP: Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999;13:2072-2086.
30.
Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete MA, Kim BW, Nissim S, Mornon JP, Zavacki AM, Zeold A, Capelo LP, Curcio-Morelli C, Ribeiro R, Harney JW, Tabin CJ, Bianco AC: The hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 2005;7:698-705.
31.
Stevens DA, Hasserjian RP, Robson H, Siebler T, Shalet SM, Williams GR: Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res 2000;15:2431-2442.
32.
Bassett JH, Swinhoe R, Chassande O, Samarut J, Williams GR: Thyroid hormone regulates heparan sulfate proteoglycan expression in the growth plate. Endocrinology 2006;147:295-305.
33.
Himeno M, Enomoto H, Liu W, Ishizeki K, Nomura S, Kitamura Y, Komori T: Impaired vascular invasion of CBFA1-deficient cartilage engrafted in the spleen. J Bone Miner Res 2002;17:1297-1305.
34.
Makihira S, Yan W, Murakami H, Furukawa M, Kawai T, Nikawa H, Yoshida E, Hamada T, Okada Y, Kato Y: Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteoglycan degradation in growth plate cartilage. Endocrinology 2003;144:2480-2488.
35.
Pereira RC, Jorgetti V, Canalis E: Triiodothyronine induces collagenase-3 and gelatinase B expression in murine osteoblasts. Am J Physiol 1999;277:E496-E504.
36.
Boersma B, Otten BJ, Stoelinga GB, Wit JM: Catch-up growth after prolonged hypothyroidism. Eur J Pediatr 1996;155:362-367.
37.
Rivkees SA, Bode HH, Crawford JD: Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med 1988;318:599-602.
38.
Schlesinger S, MacGillivray MH, Munschauer RW: Acceleration of growth and bone maturation in childhood thyrotoxicosis. J Pediatr 1973;83:233-236.
39.
Segni M, Leonardi E, Mazzoncini B, Pucarelli I, Pasquino AM: Special features of Graves' disease in early childhood. Thyroid 1999;9:871-877.
40.
Supornsilchai V, Sahakitrungruang T, Wongjitrat N, Wacharasindhu S, Suphapeetiporn K, Shotelersuk V: Expanding clinical spectrum of non-autoimmune hyperthyroidism due to an activating germline mutation, p.M453T, in the thyrotropin receptor gene. Clin Endocrinol 2009;70:623-628.
41.
Dumitrescu AM, Refetoff S: The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 2012, E-pub ahead of print.
42.
Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, Henning E, Reinemund J, Gevers E, Sarri M, Downes K, Offiah A, Albanese A, Halsall D, Schwabe JW, Bain M, Lindley K, Muntoni F, Khadem FV, Dattani M, Farooqi IS, Gurnell M, Chatterjee K: A mutation in the thyroid hormone receptor α gene. N Engl J Med 2012;366:243-249.
43.
Van Mullem A, van Heerebeek R, Chrysis D, Visser E, Medici M, Andrikoula M, Tsatsoulis A, Peeters R, Visser TJ: Clinical phenotype and mutant TRα1. N Engl J Med 2012;366:1451-1453.
44.
Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S: Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 2005;37:1247-1252.
45.
Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, Padidela R, Ceron-Gutierrez L, Doffinger R, Prevosto C, Luan J, Montano S, Lu J, Castanet M, Clemons N, Groeneveld M, Castets P, Karbaschi M, Aitken S, Dixon A, Williams J, Campi I, Blount M, Burton H, Muntoni F, O'Donovan D, Dean A, Warren A, Brierley C, Baguley D, Guicheney P, Fitzgerald R, Coles A, Gaston H, Todd P, Holmgren A, Khanna KK, Cooke M, Semple R, Halsall D, Wareham N, Schwabe J, Grasso L, Beck-Peccoz P, Ogunko A, Dattani M, Gurnell M, Chatterjee K: Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest 2010;120:4220-4235.
46.
Hamajima T, Mushimoto Y, Kobayashi H, Saito Y, Onigata K: Novel compound heterozygous mutations in the sbp2 gene: Characteristic clinical manifestations and the implications of GH and triiodothyronine in longitudinal bone growth and maturation. Eur J Endocrinol 2012;166:757-764.
47.
Bassett JH, Nordstrom K, Boyde A, Howell PG, Kelly S, Vennstrom B, Williams GR: Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007;21:1893-1904.
48.
Bassett JH, O'Shea PJ, Sriskantharajah S, Rabier B, Boyde A, Howell PG, Weiss RE, Roux JP, Malaval L, Clement-Lacroix P, Samarut J, Chassande O, Williams GR: Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol 2007;21:1095-1107.
49.
Bassett JH, Williams GR: The skeletal phenotypes of TRα and TRβ mutant mice. J Mol Endocrinol 2009;42:269-282.
50.
Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE, Refetoff S, Willott JF, Sundin V, Roux JP, Malaval L, Hara M, Samarut J, Chassande O: Genetic analysis reveals different functions for the products of the thyroid hormone receptor α locus. Mol Cell Biol 2001;21:4748-4760.
51.
O'Shea PJ, Bassett JH, Sriskantharajah S, Ying H, Cheng SY, Williams GR: Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor α1 or β. Mol Endocrinol 2005;19:3045-3059.
52.
O'Shea PJ, Bassett JH, Cheng SY, Williams GR: Characterization of skeletal phenotypes of TRα1 and TRβ mutant mice: implications for tissue thyroid status and T3 target gene expression. Nucl Recept Signal 2006;4:e011.
53.
Boyle WJ, Simonet WS, Lacey DL: Osteoclast differentiation and activation. Nature 2003;423:337-342.
54.
Harada S, Rodan GA: Control of osteoblast function and regulation of bone mass. Nature 2003;423:349-355.
55.
Varga F, Rumpler M, Zoehrer R, Turecek C, Spitzer S, Thaler R, Paschalis EP, Klaushofer K: T3 affects expression of collagen I and collagen cross-linking in bone cell cultures. Biochem Biophys Res Commun 2010;402:180-185.
56.
Gouveia CH, Schultz JJ, Bianco AC, Brent GA: Thyroid hormone stimulation of osteocalcin gene expression in ROS 17/2.8 cells is mediated by transcriptional and post-transcriptional mechanisms. J Endocrinol 2001;170:667-675.
57.
Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K: Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c-fos/c-jun, and induction of osteocalcin expression. Calcif Tiss Int 1997;61:404-411.
58.
Xing W, Govoni KE, Donahue LR, Kesavan C, Wergedal J, Long C, Bassett JH, Gogakos A, Wojcicka A, Williams GR, Mohan S: Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice. J Bone Miner Res 2012;27:1067-1079.
59.
Milne M, Quail JM, Rosen CJ, Baran DT: Insulin-like growth factor binding proteins in femoral and vertebral bone marrow stromal cells: expression and regulation by thyroid hormone and dexamethasone. J Cell Biochem 2001;81:229-240.
60.
Stevens DA, Harvey CB, Scott AJ, O'Shea PJ, Barnard JC, Williams AJ, Brady G, Samarut J, Chassande O, Williams GR: Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol Endocrinol 2003;17:1751-1766.
61.
O'Shea PJ, Kim DW, Logan JG, Davis S, Walker RL, Meltzer PS, Cheng SY, Williams GR: Advanced bone formation in mice with a dominant-negative mutation in the thyroid hormone receptor β gene due to activation of Wnt/β-catenin protein signaling. J Biol Chem 2012;287:17812-17822.
62.
Varga F, Spitzer S, Klaushofer K: Triiodothyronine (T3) and 1,25-dihydroxyvitamin D3 (1,25-D3) inversely regulate OPG gene expression in dependence of the osteoblastic phenotype. Calcif Tiss Int 2004;74:382-387.
63.
Khosla S: Minireview: The OPG/RANKL/RANK system. Endocrinology 2001;142:5050-5055.
64.
Saraiva PP, Teixeira SS, Padovani CR, Nogueira CR: Triiodothyronine (T3) does not induce RANKL expression in rat ROS 17/2.8 cells. Arq Bras Endocrinol Metabol 2008;52:109-113.
65.
Kanatani M, Sugimoto T, Sowa H, Kobayashi T, Kanzawa M, Chihara K: Thyroid hormone stimulates osteoclast differentiation by a mechanism independent of RANKL-RANK interaction. J Cell Physiol 2004;201:17-25.
66.
Allain TJ, Chambers TJ, Flanagan AM, McGregor AM: Tri-iodothyronine stimulates rat osteoclastic bone resorption by an indirect effect. J Endocrinol 1992;133:327-331.
67.
Klaushofer K, Hoffmann O, Gleispach H, Leis HJ, Czerwenka E, Koller K, Peterlik M: Bone-resorbing activity of thyroid hormones is related to prostaglandin production in cultured neonatal mouse calvaria. J Bone Miner Res 1989;4:305-312.
68.
Miura M, Tanaka K, Komatsu Y, Suda M, Yasoda A, Sakuma Y, Ozasa A, Nakao K: A novel interaction between thyroid hormones and 1,25-OH2D3 in osteoclast formation. Biochem Biophys Res Commun 2002;291:987-994.
69.
Mundy GR, Shapiro JL, Bandelin JG, Canalis EM, Raisz LG: Direct stimulation of bone resorption by thyroid hormones. J Clin Invest 1976;58:529-534.
70.
Siddiqi A, Parsons MP, Lewis JL, Monson JP, Williams GR, Burrin JM: TR expression and function in human bone marrow stromal and osteoblast-like cells. J Clin Endocrinol Metab 2002;87:906-914.
71.
Eriksen EF, Mosekilde L, Melsen F: Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone 1986;7:101-108.
72.
Mosekilde L, Eriksen EF, Charles P: Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990;19:35-63.
73.
Vestergaard P, Mosekilde L: Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 2002;12:411-419.
74.
Vestergaard P, Rejnmark L, Mosekilde L: Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tiss Int 2005;77:139-144.
75.
Williams GR: The skeletal system in thyrotoxicosis; in Braverman LE, Cooper DS (eds): Werner and Ingbar's The Thyroid: a Fundamental and Clinical Text. Philadelphia, Lippincott Williams & Wilkins, 2012, pp 468-475.
76.
Bauer DC, Ettinger B, Nevitt MC, Stone KL: Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med 2001;134:561-568.
77.
Lee JS, Buzkova P, Fink HA, Vu J, Carbone L, Chen Z, Cauley J, Bauer DC, Cappola AR, Robbins J: Subclinical thyroid dysfunction and incident hip fracture in older adults. Arch Intern Med 2010;170:1876-1883.
78.
Leese GP, Flynn RV: Levothyroxine dose and fractures in older adults. BMJ 2011;342: d2250.
79.
Murphy E, Gluer CC, Reid DM, Felsenberg D, Roux C, Eastell R, Williams GR: Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 2010;95:3173-3181.
80.
Roef G, Lapauw B, Goemaere S, Zmierczak H, Fiers T, Kaufman JM, Taes Y: Thyroid hormone status within the physiological range affects bone mass and density in healthy men at the age of peak bone mass. Eur J Endocrinol 2011;164:1027-1034.
81.
Van der Deure WM, Uitterlinden AG, Hofman A, Rivadeneira F, Pols HA, Peeters RP, Visser TJ: Effects of serum TSH and fT4 levels and the TSHR-asp727glu polymorphism on bone: The Rotterdam Study. Clin Endocrinol 2008;68:175-181.
82.
Williams GR: The skeletal system in hypothyroidism; in Braverman LE, Cooper DS (eds): Werner and Ingbar's The Thyroid: a Fundamental and Clinical Text. Philadelphia, Lippincott Williams & Wilkins, 2012, pp 590-595.
83.
Meulenbelt I, Bos SD, Chapman K, van der Breggen R, Houwing-Duistermaat JJ, Kremer D, Kloppenburg M, Carr A, Tsezou A, Gonzalez A, Loughlin J, Slagboom PE: Meta-analyses of genes modulating intracellular T3 bio-availability reveal a possible role for the Dio3 gene in osteoarthritis susceptibility. Ann Rheum Dis 2010;70:164-167.
84.
Meulenbelt I, Min JL, Bos S, Riyazi N, Houwing-Duistermaat JJ, van der Wijk HJ, Kroon HM, Nakajima M, Ikegawa S, Uitterlinden AG, van Meurs JB, van der Deure WM, Visser TJ, Seymour AB, Lakenberg N, van der Breggen R, Kremer D, van Duijn CM, Kloppenburg M, Loughlin J, Slagboom PE: Identification of Dio2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet 2008;17:1867-1875.
85.
Kerkhof HJ, Lories RJ, Meulenbelt I, Jonsdottir I, Valdes AM, Arp P, Ingvarsson T, Jhamai M, Jonsson H, Stolk L, Thorleifsson G, Zhai G, Zhang F, Zhu Y, van der Breggen R, Carr A, Doherty M, Doherty S, Felson DT, Gonzalez A, Halldorsson BV, Hart DJ, Hauksson VB, Hofman A, Ioannidis JP, Kloppenburg M, Lane NE, Loughlin J, Luyten FP, Nevitt MC, Parimi N, Pols HA, Rivadeneira F, Slagboom EP, Styrkarsdottir U, Tsezou A, van de Putte T, Zmuda J, Spector TD, Stefansson K, Uitterlinden AG, van Meurs JB: A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis Rheum 2010;62:499-510.
86.
Waarsing JH, Kloppenburg M, Slagboom PE, Kroon HM, Houwing-Duistermaat JJ, Weinans H, Meulenbelt I: Osteoarthritis susceptibility genes influence the association between hip morphology and osteoarthritis. Arthritis Rheum 2011;63:1349-1354.
87.
Bos SD, Bovee JV, Duijnisveld BJ, Raine EV, van Dalen WJ, Ramos YF, van der Breggen R, Nelissen RG, Slagboom PE, Loughlin J, Meulenbelt I: Increased type II deiodinase protein in OA-affected cartilage and allelic imbalance of OA risk polymorphism rs225014 at Dio2 in human OA joint tissues. Ann Rheum Dis 2012;71:1254-1258.
88.
Ladenson PW, Kristensen JD, Ridgway EC, Olsson AG, Carlsson B, Klein I, Baxter JD, Angelin B: Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N Engl J Med 2010;362:906-916.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.