This study was undertaken in order to assess the role of purely circulation-related effects upon free-radical-mediated reperfusion injury in the liver by comparing the respective effects of the oxygen free-radical scavenger superoxide dismutase (SOD) and the vasodilative action of papaverine in an ischemia/reperfusion model of the liver. Livers from male Wistar rats were rinsed blood free via the portal vein and stored ischemically (60 min at 37 °C in Krebs-Henseleit solution and 60 min at 4 °C in Euro-Collins solution). Reperfusion was carried out at a constant flow of 30 ml/min for 45 min at 37 °C in a nonrecirculating manner. Warm ischemic damage was evident in untreated livers compared to control livers, submitted solely to cold ischemia for 2 h at 4°C, by increased vascular resistance upon reperfusion, enhanced enzyme leakage from the parenchyme (glutamate pyruvate transaminase, glutamate dehydrogenase) and from the endothelium (purine-nucleoside phosphorylase), reduced tissue content of ATP and enhanced lipid peroxidation. Preischemic treatment with SOD or papaverine (the latter also given during reperfusion) significantly reduced hepatic vascular resistance and parenchymal enzyme loss in a comparable manner. Both drugs resulted in a significant increase of hepatic tissue content of ATP at the end of reperfusion. SOD, but not papaverine, prevented the leakage of purine-nucleoside phosphorylase and significantly reduced the tissue levels of lipid peroxides. Since induced vasodilatation by papaverine mimicked the beneficial effects of SOD on hepatocellular viability after reperfusion, we conclude that toxic oxygen species exert a major impact on the vascular system and that the hepatocyte is significantly altered by circulatory disturbances during reperfusion, which can be reduced by SOD as well as papaverine.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.