Introduction: Previous studies have shown that tea consumption may have a protective effect against neurodegenerative diseases. However, the exact causal relationship between tea consumption and the precursor stages of certain neurodegenerative diseases, namely, REM sleep behavior disorder (RBD), remains unclear. To evaluate the causal association between tea consumption and RBD, we employed a Mendelian randomization study. Methods: We identified genetic instrumental variables that are significantly associated with tea consumption through genome-wide association studies (GWAS) in European populations. Bidirectional two-sample Mendelian randomization was utilized to determine the causal relationship between tea consumption and RBD, while sensitivity analyses were further employed to evaluate the robustness of the results. The multivariate Mendelian randomization method was used to assess the influence of relevant confounding factors on the results. Results: In the MR analysis using the inverse-variance weighting method, a significant causal relationship between tea consumption and RBD was observed (OR = 0.046, 95% CI: 0.004–0.563, p = 0.016). The consistency of findings across maximum likelihood, MR Pleiotropy RESidual Sum and Outlier, and multivariate MR after adjusting for potential confounding further supports this causal association. Sensitivity analyses revealed no evidence of heterogeneity or pleiotropy. Conclusions: The findings of our study demonstrate a robust causal association between tea consumption and RBD, indicating that tea consumption may serve as a protective factor against the development of RBD.

1.
Schenck
CH
,
Bundlie
SR
,
Patterson
AL
,
Mahowald
MW
.
Rapid eye movement sleep behavior disorder. A treatable parasomnia affecting older adults
.
JAMA
.
1987
;
257
(
13
):
1786
9
.
2.
Gagnon
JF
,
Postuma
RB
,
Mazza
S
,
Doyon
J
,
Montplaisir
J
.
Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases
.
Lancet Neurol
.
2006
;
5
(
5
):
424
32
.
3.
Boeve
BF
,
Silber
MH
,
Saper
CB
,
Ferman
TJ
,
Dickson
DW
,
Parisi
JE
, et al
.
Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease
.
Brain
.
2007
;
130
(
Pt 11
):
2770
88
.
4.
Iranzo
A
,
Molinuevo
JL
,
Santamaría
J
,
Serradell
M
,
Martí
MJ
,
Valldeoriola
F
, et al
.
Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study
.
Lancet Neurol
.
2006
;
5
(
7
):
572
7
.
5.
Schenck
CH
,
Bundlie
SR
,
Mahowald
MW
.
Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder
.
Neurology
.
1996
;
46
(
2
):
388
93
.
6.
Postuma
RB
,
Gagnon
JF
,
Vendette
M
,
Fantini
ML
,
Massicotte-Marquez
J
,
Montplaisir
J
.
Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder
.
Neurology
.
2009
;
72
(
15
):
1296
300
.
7.
Postuma
RB
,
Gagnon
JF
,
Vendette
M
,
Desjardins
C
,
Montplaisir
JY
.
Olfaction and color vision identify impending neurodegeneration in rapid eye movement sleep behavior disorder
.
Ann Neurol
.
2011
;
69
(
5
):
811
8
.
8.
Pastoriza
S
,
Pérez-Burillo
S
,
Rufián-Henares
.
How brewing parameters affect the healthy profile of tea
.
Curr Opin Food Sci
.
2017
;
14
:
7
12
.
9.
Tang
GY
,
Meng
X
,
Gan
RY
,
Zhao
CN
,
Liu
Q
,
Feng
YB
, et al
.
Health functions and related molecular mechanisms of tea components: an update review
.
Int J Mol Sci
.
2019
;
20
(
24
):
6196
.
10.
Gan
RY
,
Li
HB
,
Sui
ZQ
,
Corke
H
.
Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review
.
Crit Rev Food Sci Nutr
.
2018
;
58
(
6
):
924
41
.
11.
Ramadan
G
,
El-Beih
NM
,
Talaat
RM
,
Abd El-Ghffar
EA
.
Anti-inflammatory activity of green versus black tea aqueous extract in a rat model of human rheumatoid arthritis
.
Int J Rheum Dis
.
2017
;
20
(
2
):
203
13
.
12.
Santamarina
AB
,
Carvalho-Silva
M
,
Gomes
LM
,
Okuda
MH
,
Santana
AA
,
Streck
EL
, et al
.
Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice
.
J Nutr Biochem
.
2015
;
26
(
11
):
1348
56
.
13.
Pervin
M
,
Unno
K
,
Ohishi
T
,
Tanabe
H
,
Miyoshi
N
,
Nakamura
Y
.
Beneficial effects of green tea catechins on neurodegenerative diseases
.
Molecules
.
2018
;
23
(
6
):
1297
.
14.
Degan
D
,
Ornello
R
,
Tiseo
C
,
Carolei
A
,
Sacco
S
,
Pistoia
F
.
The role of inflammation in neurological disorders
.
Curr Pharm Des
.
2018
;
24
(
14
):
1485
501
.
15.
Choi
C
,
Song
HD
,
Son
Y
,
Cho
YK
,
Ahn
SY
,
Jung
YS
, et al
.
Epigallocatechin-3-Gallate reduces visceral adiposity partly through the regulation of beclin1-dependent autophagy in white adipose tissues
.
Nutrients
.
2020
;
12
(
10
):
3072
.
16.
Mandel
SA
,
Amit
T
,
Weinreb
O
,
Reznichenko
L
,
Youdim
MB
.
Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases
.
CNS Neurosci Ther
.
2008
;
14
(
4
):
352
65
.
17.
Jelenković
A
,
Jovanović
MD
,
Stevanović
I
,
Petronijević
N
,
Bokonjić
D
,
Zivković
J
, et al
.
Influence of the green tea leaf extract on neurotoxicity of aluminium chloride in rats
.
Phytother Res
.
2014
;
28
(
1
):
82
7
.
18.
Cheng
CY
,
Barro
L
,
Tsai
ST
,
Feng
TW
,
Wu
XY
,
Chao
CW
, et al
.
Epigallocatechin-3-Gallate-Loaded liposomes favor anti-inflammation of microglia cells and promote neuroprotection
.
Int J Mol Sci
.
2021
;
22
(
6
):
3037
.
19.
Bao
J
,
Liu
W
,
Zhou
HY
,
Gui
YR
,
Yang
YH
,
Wu
MJ
, et al
.
Epigallocatechin-3-gallate alleviates cognitive deficits in APP/PS1 mice
.
Curr Med Sci
.
2020
;
40
(
1
):
18
27
.
20.
Chen
M
,
Wang
T
,
Yue
F
,
Li
X
,
Wang
P
,
Li
Y
, et al
.
Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys
.
Neuroscience
.
2015
;
286
:
383
92
.
21.
Lawlor
DA
,
Harbord
RM
,
Sterne
JA
,
Timpson
N
,
Davey Smith
G
.
Mendelian randomization: using genes as instruments for making causal inferences in epidemiology
.
Stat Med
.
2008
;
27
(
8
):
1133
63
.
22.
Sekula
P
,
Del Greco M
F
,
Pattaro
C
,
Köttgen
A
.
Mendelian randomization as an approach to assess causality using observational data
.
J Am Soc Nephrol
.
2016
;
27
(
11
):
3253
65
.
23.
Pirastu
N
,
McDonnell
C
,
Grzeszkowiak
EJ
,
Mounier
N
,
Imamura
F
,
Merino
J
, et al
.
Using genetic variation to disentangle the complex relationship between food intake and health outcomes
.
PLoS Genet
.
2022
;
18
(
6
):
e1010162
.
24.
Elsworth
B
,
Lyon
M
,
Alexander
T
,
Liu
Y
,
Matthews
P
,
Hallett
J
, et al
.
The MRC IEU OpenGWAS data infrastructure
;
2020
.
25.
Clarke
TK
,
Adams
MJ
,
Davies
G
,
Howard
DM
,
Hall
LS
,
Padmanabhan
S
, et al
.
Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117)
.
Mol Psychiatry
.
2017
;
22
(
10
):
1376
84
.
26.
Howe
LJ
,
Nivard
MG
,
Morris
TT
,
Hansen
AF
,
Rasheed
H
,
Cho
Y
, et al
.
Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects
.
Nat Genet
.
2022
;
54
(
5
):
581
92
.
27.
Krohn
L
,
Heilbron
K
,
Blauwendraat
C
,
Reynolds
RH
,
Yu
E
,
Senkevich
K
, et al
.
Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects
.
Nat Commun
.
2022
;
13
(
1
):
7496
.
28.
Palmer
TM
,
Lawlor
DA
,
Harbord
RM
,
Sheehan
NA
,
Tobias
JH
,
Timpson
NJ
, et al
.
Using multiple genetic variants as instrumental variables for modifiable risk factors
.
Stat Methods Med Res
.
2012
;
21
(
3
):
223
42
.
29.
Burgess
S
,
Thompson
SG
;
CRP CHD Genetics Collaboration
.
Avoiding bias from weak instruments in Mendelian randomization studies
.
Int J Epidemiol
.
2011
;
40
(
3
):
755
64
.
30.
Kamat
MA
,
Blackshaw
JA
,
Young
R
,
Surendran
P
,
Burgess
S
,
Danesh
J
, et al
.
PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations
.
Bioinforma
.
2019
;
35
(
22
):
4851
3
.
31.
Hemani
G
,
Zheng
J
,
Elsworth
B
,
Wade
KH
,
Haberland
V
,
Baird
D
, et al
.
The MR-Base platform supports systematic causal inference across the human phenome
.
Elife
.
2018
;
7
:
e34408
.
32.
Burgess
S
,
Scott
RA
,
Timpson
NJ
,
Davey Smith
G
,
Thompson
SG
;
EPIC- InterAct Consortium
.
Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors
.
Eur J Epidemiol
.
2015
;
30
(
7
):
543
52
.
33.
Bowden
J
,
Davey Smith
G
,
Burgess
S
.
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
.
Int J Epidemiol
.
2015
;
44
(
2
):
512
25
.
34.
Bowden
J
,
Davey Smith
G
,
Haycock
PC
,
Burgess
S
.
Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator
.
Genet Epidemiol
.
2016
;
40
(
4
):
304
14
.
35.
Burgess
S
,
Butterworth
A
,
Thompson
SG
.
Mendelian randomization analysis with multiple genetic variants using summarized data
.
Genet Epidemiol
.
2013
;
37
(
7
):
658
65
.
36.
Burgess
S
,
Foley
CN
,
Allara
E
,
Staley
JR
,
Howson
JMM
.
A robust and efficient method for Mendelian randomization with hundreds of genetic variants
.
Nat Commun
.
2020
;
11
(
1
):
376
.
37.
Yu
K
,
Chen
XF
,
Guo
J
,
Wang
S
,
Huang
XT
,
Guo
Y
, et al
.
Assessment of bidirectional relationships between brain imaging-derived phenotypes and stroke: a Mendelian randomization study
.
BMC Med
.
2023
;
21
(
1
):
271
.
38.
Ye
T
,
Shao
J
,
Kang
H
.
Debiased inverse-variance weighted estimator in two-sample summary-data mendelian randomization
.
Ann Statist
.
2021
;
49
(
4
).
39.
Mounier
N
,
Kutalik
Z
.
Bias correction for inverse variance weighting Mendelian randomization
.
Genet Epidemiol
.
2023
;
47
(
4
):
314
31
.
40.
Verbanck
M
,
Chen
CY
,
Neale
B
,
Do
R
.
Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases
.
Nat Genet
.
2018
;
50
(
5
):
693
8
.
41.
Burgess
S
,
Thompson
SG
.
Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects
.
Am J Epidemiol
.
2015
;
181
(
4
):
251
60
.
42.
Larsson
SC
,
Butterworth
AS
,
Burgess
S
.
Mendelian randomization for cardiovascular diseases: principles and applications
.
Eur Heart J
.
2023
;
44
(
47
):
4913
24
.
43.
Bowden
J
,
Del Greco M
F
,
Minelli
C
,
Davey Smith
G
,
Sheehan
N
,
Thompson
J
.
A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization
.
Stat Med
.
2017
;
36
(
11
):
1783
802
.
44.
Team RCJMc
.
R: a language and environment for statistical computing
;
2014
.
Vol. 1
.
45.
Postuma
RB
,
Montplaisir
JY
,
Pelletier
A
,
Dauvilliers
Y
,
Oertel
W
,
Iranzo
A
, et al
.
Environmental risk factors for REM sleep behavior disorder: a multicenter case-control study
.
Neurology
.
2012
;
79
(
5
):
428
34
.
46.
Smith
AM
,
Depp
C
,
Ryan
BJ
,
Johnston
GI
,
Alegre-Abarrategui
J
,
Evetts
S
, et al
.
Mitochondrial dysfunction and increased glycolysis in prodromal and early Parkinson’ blood cells
.
Mov Disord
.
2018
;
33
(
10
):
1580
90
.
47.
Agapouda
A
,
Butterweck
V
,
Hamburger
M
,
de Beer
D
,
Joubert
E
,
Eckert
A
.
Honeybush extracts (cyclopia spp.) rescue mitochondrial functions and bioenergetics against oxidative injury
.
Oxid Med Cell Longev
.
2020
;
2020
:
1948602
.
48.
Qi
G
,
Mi
Y
,
Fan
R
,
Zhao
B
,
Ren
B
,
Liu
X
.
Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1
.
Food Chem Toxicol
.
2017
;
110
:
189
99
.
49.
Campolo
J
,
De Maria
R
,
Cozzi
L
,
Parolini
M
,
Bernardi
S
,
Proserpio
P
, et al
.
Antioxidant and inflammatory biomarkers for the identification of prodromal Parkinson’s disease
.
J Neurol Sci
.
2016
;
370
:
167
72
.
50.
Stokholm
MG
,
Iranzo
A
,
Østergaard
K
,
Serradell
M
,
Otto
M
,
Svendsen
KB
, et al
.
Assessment of neuroinflammation in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study
.
Lancet Neurol
.
2017
;
16
(
10
):
789
96
.
51.
Farkhondeh
T
,
Pourbagher-Shahri
AM
,
Ashrafizadeh
M
,
Folgado
SL
,
Rajabpour-Sanati
A
,
Khazdair
MR
, et al
.
Green tea catechins inhibit microglial activation which prevents the development of neurological disorders
.
Neural Regen Res
.
2020
;
15
(
10
):
1792
8
.
52.
Spencer
JP
,
Vafeiadou
K
,
Williams
RJ
,
Vauzour
D
.
Neuroinflammation: modulation by flavonoids and mechanisms of action
.
Mol Aspects Med
.
2012
;
33
(
1
):
83
97
.
53.
Huang
B
,
Chau
SWH
,
Liu
Y
,
Chan
JWY
,
Wang
J
,
Ma
SL
, et al
.
Gut microbiome dysbiosis across early Parkinson’s disease, REM sleep behavior disorder and their first-degree relatives
.
Nat Commun
.
2023
;
14
(
1
):
2501
.
54.
Li
M
,
Zhang
C
,
Xiao
X
,
Zhu
M
,
Quan
W
,
Liu
X
, et al
.
Theaflavins in black tea mitigate aging-associated cognitive dysfunction via the microbiota-gut-brain Axis
.
J Agric Food Chem
.
2023
;
71
(
5
):
2356
69
.
55.
Li
S
,
Lo
CY
,
Pan
MH
,
Lai
CS
,
Ho
CT
.
Black tea: chemical analysis and stability
.
Food Funct
.
2013
;
4
(
1
):
10
8
.
You do not currently have access to this content.